PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydropneumatic suspension testing of a wheeled armoured personnel carrier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to determine the effect of gas pressure and temperature on the spring characteristic of a HP strut used in a wheeled armoured personnel carrier. The research was performed based on a simulation model. Data to validate the model were obtained during experimental tests. The results indicate, among other things, that the friction generated in the seals is an important source of resistance force. Comparison of the simulation results with the measured characteristics indicates a proper modelling of the strut operation. Simulation studies have indicated that it is easy to modify the required suspension parameters by adjusting the initial gas pressure. A linear effect of pressure on static deflection can be assumed. Temperature has a strong influence on the spring characteristic. When it changes, significant changes in vehicle height are observed due to the lack of a compensation system. The temperature changes are not only due to changes in ambient temperature, but also by intense heating of the HP struts caused by the vehicle moving over rough terrain.
Rocznik
Strony
art. no. 162497
Opis fizyczny
Bibliogr. 20 poz., fot., tab., wykr.
Twórcy
  • Instytut Pojazdów i Transportu, Wojskowa Akademia Techniczna, Poland
autor
  • Instytut Pojazdów i Transportu, Wojskowa Akademia Techniczna, Poland
  • Laboratorium Badań Pojazdów Gąsienicowych, Military Instytute of Armoured and Automotive Technology, Poland
  • Laboratorium Badań Pojazdów Gąsienicowych, Military Instytute of Armoured and Automotive Technology, Poland
  • Ministry of National Defence, Poland
Bibliografia
  • 1. Agarwal NK, Lawson CP. A practical method to account for seal friction in aircraft hydraulic actuator preliminary design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2017; 231(5): 941-950, https://doi.org/10.1177/0954410016645371.
  • 2. Bauer W. Hydropneumatic Suspension Systems, Springer-Verlag Berlin Heidelberg: 2011, ISBN 978-3-642-15146-0, https://doi.org/10.1007/978-3-642-15147-7.
  • 3. Congbin Y, Xiaodong G, Zhifeng L, Ligang C, Qiang C, Caixia Z. Modeling and analysis of the vibration characteristics of a new type of in-arm hydropneumatic suspension of a tracked vehicle. Journal of Vibroengineering 2016; 18(7): 4627-4646, https://doi.org/10.21595/jve.2016.16800.
  • 4. Feng J, Matthews C, Zheng S, Yu F, Gao D. Hierarchical Control Strategy for Active Hydropneumatic Suspension Vehicles Based on Genetic Algorithms. Advances in Mechanical Engineering 2015; 7(2): 951050, https://doi:10.1155/2014/951050.
  • 5. Han S, Chao Z, Liu X. Research on the Effects of Hydropneumatic Parameters on Tracked Vehicle Ride Safety Based on Cosimulation. Shock and Vibration 2017; Article ID 1256536: 1-10, https://doi.org/10.1155/2017/1256536.
  • 6. Hryciów Z. An Investigation of the Influence of Temperature and Technical Condition on the Hydraulic Shock Absorber Characteristics. Applied Sciences 2022; 12(24): 12765, https://doi.org/10.3390/app122412765.
  • 7. Hryciów Z, Małachowski J, Rybak P, Wiśniewski A. Research of Vibrations of an Armoured Personnel Carrier Hull with FE Implementation. Materials 2021; 14(22): 6807, https://doi.org/10.3390/ma14226807
  • 8. Hryciów Z, Rybak P, Gieleta R. The influence of temperature on the damping characteristic of hydraulic shock absorbers. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (2): 346–351, http://doi.org/10.17531/ein.2021.2.14.
  • 9. Kinagi GV, Wadkar S, Sonawane D. Mathematical Modeling of Hydropneumatic Suspension System. SAE Technical Paper Series 2013; 2013-01-1928: 1-10, https://doi.org/10.4271/2013-01-1928..
  • 10. Konieczny L, Burdzik R, Węgrzyn T. Analysis of Structural and Material Aspects of Selected Elements of a Hydropneumatic Suspension System in a Passenger Car. Archives of Metallurgy and Materials 2016; 61(1): 79-83, https://doi.org/10.1515/amm-2016-0018.
  • 11. Lin D, Yang F, Gong D, Rakheja S. Design and experimental modeling of a compact hydro-pneumatic suspension strut. Nonlinear Dynamics 2020; 100(4): 3307–3320, https://doi.org/10.1007/s11071-020-05714-3
  • 12. Oscarsson M. A Hydropneumatic Suspension Parameter Study on Heavy Multi-axle Vehicle Handling, Royal Institute of Technology, Sztokholm: 2015.
  • 13. Pan Q, Zeng Y, Li Y, Jiang X, Huang M. Experimental investigation of friction behaviors for double-acting hydraulic actuators with different reciprocating seals. Tribology International 2021; 153 (106506): 1-14, https://doi.org/10.1016/j.triboint.2020.106506.
  • 14. Qin B, Zeng R, Li X, Yang J. Design and Performance Analysis of the Hydropneumatic Suspension System for a Novel Road-Rail Vehicle. Applied Sciences 2021; 11(5): 1-16, https://doi.org/10.3390/app11052221.
  • 15. Siminski P. Aspect of Simulation and Experimental Research Studies on Wheeled Armored Fighting Vehicles with Hydropneumatic Suspension. SAE Technical Paper 2010-01-0651, 2010. https://doi.org/10.4271/2010-01-0651
  • 16. Sun H, Li R, Xu J, Xu F, Zhang B, Dong X. Fractional Modeling and Characteristic Analysis of Hydro-Pneumatic Suspension for Construction Vehicles. Processes 2021; 9(8): 1414, https://doi.org/10.3390/pr9081414.
  • 17. Tran X, Khaing W, Endo H, Yanada H. Effect of friction model on simulation of hydraulic actuator. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 2014; 228(9) :690-698, https://doi.org/10.1177/0959651814539476.
  • 18. van der Westhuizen SF, Els PS. Comparison of different gas models to calculate the spring force of a hydropneumatic suspension. Journal of Terramechanics 2015; 57: 41-59, https://doi.org/10.1016/j.jterra.2014.11.002.
  • 19. Wu W, Tang H, Zhang S. High-Precision Dynamics Characteristic Modeling Method Research considering the Influence Factors of Hydropneumatic Suspension. Shock and Vibration 2020; Article ID 8886631: 1-21, https://doi.org/10.1155/2020/8886631.
  • 20. Yin C, Zhai X, Sun X, Wang S, Wong PK. Design and performance research of a hydro-pneumatic suspension with variable damping and stiffness characteristics. Journal of Mechanical Science and Technology 2022; 36 (10): 4913-4923, http://doi.org/10.1007/s12206-022-0905-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee7f08dc-94ce-4f57-af8f-1c24afdff314
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.