PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on alkali resistant glass fibre concrete and its exposure to elevated temperatures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Cement concrete is characterized as brittle in nature, the loading capacity of which is completely lost once failure is initiated. This characteristic, which limits the application of the material, can in one way be overcome by the addition of some small amount of short randomly distributed fibers (steel, glass, synthetic). Design/methodology/approach: The present study deals with the inclusion of alkali resistant glass fibers in concrete by percentage weight of cement. The mechanical properties such as compressive strength and split tensile strength have been studied after exposing the concrete samples to elevated temperatures of up to 500°C. Water binder ratios of 0.4, 0.45, 0.5, 0.55 and 0.6 have been used to prepare design mix proportions of concrete to achieve a characteristic strength of 30 MPa. The depth of carbonation post elevated temperature exposure has been measured by subjecting the concrete samples to an accelerated carbonation (5%) condition in a controlled chamber. Findings: Conclusions have been drawn in accordance to the effect of fiber replacement and temperature increment. The concrete mixes with fiber content of 1% by weight of cement had shown better strength in compression and tension compared to the other dosages and conventional concrete (without fiber). Microcracking due to internal stream pressure reduced the mechanical strengths of concrete at elevated temperatures. Also, from TGA it was observed that the amount of calcium carbonate in samples with fiber added, post carbonation was less than the mixes without fiber in it. Research limitations/implications: The present study has been limited to alkali resistant glass fibers as the conventional glass fibers undergo corrosion due to hydration. Practical implications: The glass fiber reinforced concrete can be used in the building renovation works, water and drainage works, b ridge and tunnel lining panels etc. Originality/value: Based upon the available literature, very seldom the studies are addressing the behaviour of alkali resistant glass fiber concrete and its exposure to elevated temperatures.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil and Chemical Engineering, Manipal University Jaipur, Jaipur, India
autor
  • Department of Civil Engineering, National Institute of Technology Hamirpur, Hamirpur, India
Bibliografia
  • [1] F. Aslani, R. Gedeon, Experimental investigation into the properties of self-compacting rubberised concrete incorporating polypropylene and steel fibers, Structural Concrete 20/1 (2019) 267-281. DOI: https://doi.org/10.1002/suco.201800182
  • [2] Y.M. Ghugal, S.B. Deshmukh, Performance of alkali-resistant glass fiber reinforced concrete, Journal of Reinforced Plastics and Composites 25/6 (2006) 617-630. DOI: https://doi.org/10.1177%2F0731684405058273
  • [3] A. Ateş, Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC), Composites Part B: Engineering 96 (2016) 295-304. DOI: https://doi.org/10.1016/j.compositesb.2016.04.049
  • [4] N. Banthia, S.M. Soleimani, Flexural response of hybrid fiber-reinforced cementitious composites, ACI Materials Journal 102/6 (2005) 382-389.
  • [5] F. Bayramov, C. Taşdemir, M.A. Taşdemir, Optimisation of steel fibre reinforced concretes by means of statistical response surface method, Cement and Concrete Composites 26/6 (2004) 665-675. DOI: https://doi.org/10.1016/S0958-9465(03)00161-6
  • [6] P. Balaguru, H. Najm, High-performance fiber-reinforced concrete mixture proportions with high fiber volume fractions, Materials Journal 101/4 (2004) 281-286.
  • [7] K. Ramesh, D. Rama Seshu, M. Prabhakar, Constitutive behaviour of confined fibre reinforced concrete under axial compression, Cement and Concrete Composites 25/3 (2003) 343-350. DOI: https://doi.org/10.1016/S0958-9465(02)00051-3
  • [8] S.P. Shah, J.I. Daniel, S.H. Ahmad, M. Arockiasamy, P. Balaguru, C.G. Ball, H.P. Ball et al, Measurement of properties of fiber reinforced concrete, Materials Journal 85/6 (1988) 583-593.
  • [9] Y. Choi, R.L. Yuan, Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC, Cement and Concrete Research 35/8 (2005) 1587-1591. DOI: https://doi.org/10.1016/j.cemconres.2004.09.010
  • [10] C. Signorini, A. Sola, B. Malchiodi, A. Nobili, A. Gatto, Failure mechanism of silica coated polypropylene fibres for Fibre Reinforced Concrete (FRC), Construction and Building Materials 236 (2020) 117549. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117549
  • [11] R.N. Swamy, Fibre-Reinforced Concrete: Mechanics, Properties, and Applications, 1974.
  • [12] D.J. Hananth, Fiber cements and fiber concretes, John Wiley and Sons Ltd. 1998, 81-98.
  • [13] P. Ramadoss, K. Nagamani, Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods. Computers and Concrete 3/6 (2006) 389-400. DOI: http://dx.doi.org/10.12989/cac.2006.3.6.389
  • [14] J. Thomas, A. Ramaswamy, Mechanical properties of steel fiber-reinforced concrete, Journal of Materials in Civil Engineering 19/5 (2007) 385-392. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
  • [15] F. Köksal, F. Altun, İ. Yiğit, Y. Şahin, Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes, Construction and Building Materials 22/8 (2008) 1874-1880. DOI: https://doi.org/10.1016/j.conbuildmat.2007.04.017
  • [16] H.B. Dhonde, Y.L. Mo, T.T.C. Hsu, J. Vogel, Fresh and hardened properties of self-consolidating fiber-reinforced concrete, Materials Journal 104/5 (2007) 491-500.
  • [17] M. Sahmaran, I.O. Yaman, Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash, Construction and Building Materials 21/1 (2007) 150-156. DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.032
  • [18] Y. Mohammadi, S.P. Singh, S.K. Kaushik, Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state, Construction and Building Materials 22/5 (2008) 956-965. DOI: https://doi.org/10.1016/j.conbuildmat.2006.12.004
  • [19] N. Banthia, A study of some factors affecting the fiber-matrix bond in steel fiber reinforced concrete, Canadian Journal of Civil Engineering 17/4 (1990) 610-620. DOI: https://doi.org/10.1139/l90-069
  • [20] C. Zanotti, N. Banthia, G. Plizzari, A study of some factors affecting bond in cementitious fiber reinforced repairs, Cement and Concrete Research 63 (2014) 117-126. DOI: https://doi.org/10.1016/j.cemconres.2014.05.008
  • [21] Q. Xiaochun, L. Xiaoming, C. Xiaopei, The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: corrosion mechanism and performance analysis, International Journal of Pavement Research and Technology 10/6 (2017) 536-544. DOI: https://doi.org/10.1016/j.ijprt.2017.06.003
  • [22] G.T. Gilbert, GFRC–30 Years of High Fiber Cement Composite Applications Worldwide, Special Publication 224 (2004) 1-20.
  • [23] A. Bentur, S. Mindess, Fibre reinforced cementitious composites, CRC Press, 2006.
  • [24] K.L. Litherland, D.R. Oakley, B.A. Proctor, The use of accelerated ageing procedures to predict the long term strength of GRC composites, Cement and Concrete Research 11/3 (1981) 455-466. DOI: https://doi.org/10.1016/0008-8846(81)90117-4
  • [25] F. Deschner, F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, F. Goetz-Neunhoeffer, J. Neubauer, Hydration of Portland cement with high replacement by siliceous fly ash, Cement and Concrete Research 42/10 (2012) 1389-1400. DOI: https://doi.org/10.1016/j.cemconres.2012.06.009
  • [26] R.J. Charles, Static fatigue of glass. II, Journal of Applied Physics 29/11 (1958) 1554. DOI: https://doi.org/10.1063/1.1722992
  • [27] M. Hayashi, S. Sato, H. Fujii, Some ways to improve durability of GFRC, Proceedings of the Symposium on Durability of Glass-fibre Reinforced Concrete, vol. 270, Prestressed Concrete Institute, Chicago, 1985.
  • [28] A.J. Majumdar, Some aspects of glass fibre reinforced cement research, in: Advances in Cement-Matrix Composites, Materials Research Society Boston, 1980, 37-60.
  • [29] M.S. Stucke, A.J. Majumdar, Microstructure of glass fibre-reinforced cement composites, Journal of Materials Science 11/6 (1976) 1019-1030. DOI: https://doi.org/10.1007/BF00553110
  • [30] E.B. Cohen, S. Diamond, Validity of flexural strength reduction as an indication of alkali attack on glass in fibre reinforced cement composites, Proceedings of the Fibre Reinforced Cement and Concrete, RILEM Symposium, 1975, 315-325.
  • [31] P. Purnell, N.R. Short, C.L. Page, A.J. Majumdar, Microstructural observations in new matrix glass fibre reinforced cement, Cement and Concrete Research 30/11 (2000) 1747-1753. DOI: https://doi.org/10.1016/S0008-8846(00)00407-5
  • [32] J. Péra, J. Ambroise, New applications of calcium sulfoaluminate cement. Cement and Concrete Research 34/4 (2004) 671-676. DOI: https://doi.org/10.1016/j.cemconres.2003.10.019
  • [33] H. Cuypers, J. Wastiels, P. Van Itterbeeck, E. De Bolster, J. Orlowsky, M. Raupach, Durability of glass fibre reinforced composites experimental methods and results, Composites Part A: Applied Science and Manufacturing 37/2 (2006) 207-215. DOI: https://doi.org/10.1016/j.compositesa.2005.03.027
  • [34] C. Scheffler, S.L. Gao, R. Plonka, E. Mäder, S. Hempel, M. Butler, V. Mechtcherine, Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete II: Water adsorption and composite interphases, Composites Science and Technology 69/7-8 (2009) 905-912. DOI: https://doi.org/10.1016/j.compscitech.2008.12.020
  • [35] H.S. Oh, D.Y. Moon, S.D. Kim, An investigation on durability of mixture of alkali-resistant glass and epoxy for civil engineering application, Procedia Engineering 14 (2011) 2223-2229. DOI: https://doi.org/10.1016/j.proeng.2011.07.280
  • [36] IS: 4031. Methods of physical tests for hydraulic cement, Indian Standard, New Delhi, 1988.
  • [37] IS: 12269. Specifications for 53 grade ordinary Portland cement, 1987.
  • [38] IS: 2386. Methods of test for aggregates for concreto - Part 3: Specific gravity, density, voids, absorption and bulking, 1963.
  • [39] IS: 10262. Recommended Guidelines for Concrete Mix Design, 2009.
  • [40] S. Hussain, D. Bhunia, S.B. Singh, M. Aggrawal, Mechanical strength and durability of mineral admixture concrete subjected to accelerated carbonation, Journal of Structural Integrity and Maintenance 3/1 (2018) 44-51. DOI: https://doi.org/10.1080/24705314.2018.1426170
  • [41] C.-F. Chang, J.-W. Chen, The experimental investigation of concrete carbonation depth, Cement and Concrete Research 36/9 (2006) 1760-1767. DOI: https://doi.org/10.1016/j.cemconres.2004.07.025
  • [42] G.W. Groves, A. Brough, I.G. Richardson, C.M. Dobson, Progressive changes in the structure of hardened C3S cement pastes due to carbonation, Journal of the American Ceramic Society 74/11 (1991) 2891-2896. DOI: https://doi.org/10.1111/j.1151-2916.1991.tb06859.x
  • [43] A.M. Dunster, An investigation of the carbonation of cement paste using trimethylsilylation, Advances in Cement Research 2/7 (1989) 99-106. DOI: https://doi.org/10.1680/adcr.1989.2.7.99
  • [44] B. Bary, C. Mügler, Simplified modelling and numerical simulations of concrete carbonation in unsaturated conditions, Revue Européenne de Génie Civil 10/9 (2006) 1049-1072. DOI: https://doi.org/10.1080/17747120.2006.9692905
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee7ef325-0fcb-4cbf-b72a-178ebf7f5049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.