Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the seismic wave attenuation beneath the Southern Granulite Terrain (SGT), India has been investigated using the coda waves from 22 local earthquakes (2.0 < ML < 3.6) recorded by 21 broadband seismic stations. The dependence of the attenuation ‘Qc’ on frequency was extracted using the single backscattering model at central frequencies 1.5, 2, 2.5, 4, 5, 8, 10, 12 and 16 Hz. Different lapse time windows, from 10 to 90 s with an interval of 10 s, were used to test the lapse time dependency. The Qc value usually ranges from 150 to 1000 within the frequency range of 2-8 Hz. However, at higher frequencies (12-16 Hz), Qc value variations range from 1500 to 2500. Estimated Qc values are comparatively lower at stations ELP and MVT across frequencies and these lower values are aligned with the previous seismic activity in the surrounding area. This correlation is further supported by the presence of shear zones, lineament, and other northwest-oriented faults, indicating a pronounced level of heterogeneity and complexity in the crust, ultimately contributing to the observed lower Qc values. The estimated Qo values range from 150 to 350, and N values range from 0.70 to 0.95. The observed Qo and N values are slightly lower than those of the other stable continental regions. The significant spatial variation in Qo values observed within the study region may be attributed to the potential existence of pore fluids, as supported by the reported Vp/Vs ratio and shear wave velocity models, which introduce heterogeneities within the crust. Taking into account all other existing studies, along with the current findings, it can be suggested that both scattering (g) and intrinsic attenuation (Qi) factors contribute to the observed attenuation of the study region. The estimated intrinsic and scattering factors align well with the global attenuation model. In the absence of detailed body wave attenuation studies in this region, the frequency-dependent Q relationships developed here are useful for the estimation of earthquake source parameters of the region. These relations may be used for the simulation of earthquake-strong ground motions, which are required for the estimation of seismic hazards and geotechnical and retrofitting analysis of critical structures in the region.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--117
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
- Department of Earth and Climate Sciences, Indian Institute of Science Education & Research-Tirupati, Tirupati, Andhra Pradesh 517507, India
autor
- Department of Earth and Climate Sciences, Indian Institute of Science Education & Research-Tirupati, Tirupati, Andhra Pradesh 517507, India
Bibliografia
- 1. Aki K (1969) Analysis of the seismic coda of local earthquakes as scattered waves. J Geophys Res 74(2):615-631
- 2. Aki K (1980a) Scattering and attenuation of shear waves in the litho- sphere. J Geophys Res: Solid Earth 85(B11):6496-6504
- 3. Aki K (1980b) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Inter 21:50-60
- 4. Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80(23):3322-3342
- 5. Akinci A, Taktak AG, Ergintav S (1994) Attenuation of coda waves in western Anatolia. Phys Earth Planet Inter 87(1-2):155-165
- 6. Calvet M, Sylvander M, Margerin L, Villasenor A (2013) Spatial variations of seismic attenuation and heterogeneity in the Pyrenees: Coda Q and peak delay time analysis. Tectonophysics 608:428-439
- 7. Chandra U (1977) Earthquakes of peninsular India—a seismotectonic study. Bull Seismol Soc Am 67(5):1387-1413
- 8. Chung JK, Chen YL, Shin TC (2009) Spatial distribution of coda Q estimated from local earthquakes in Taiwan area. Earth, Planets Space 61(9):1077-1088
- 9. Collins AS, Clark C, Plavsa D (2014) Peninsular India in Gondwana: the tectonothermal evolution of the southern granulite terrain and its Gondwanan counterparts. Gondwana Res 25(1):190-203. https://doi.org/10.1016/j.gr.2013.01.002
- 10. Dainty AM (1981) A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophys Res Lett 8(11):1126-1128
- 11. Dainty AM, Toksoz MN (1981) Seismic codas on the Earth and the Moon: a comparison. Phys Earth Planet Inter 26:250-260
- 12. Das R, Ashish SGK (2019) Crust and shallow mantle structure of south India by inverting interpolated receiver function with surface wave dispersion. J Asian Earth Sci 176:157-167
- 13. Das R, Saikia U, Rai SS (2015) The deep geology of South India inferred from Moho depth andVp/Vs ratio. Geophys J Int 203:910-926
- 14. Fehler M, Hoshiba M, Sato H, Obara K (1992) Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance. Geophys J Int 108(3):787-800
- 15. Frankel A, Wennerberg L (1987) Energy-flux model of seismic coda: separation of scattering and intrinsic attenuation. Bull Seismol Soc Am 77(4):1223-1251
- 16. Gabrielli S, De Siena L, Napolitano F, Del Pezzo E (2020) Understanding seismic path biases and magmatic activity at Mount St Helens volcano before its 2004 eruption. Geophys J Int 222(1):169-188
- 17. Gabrielli S, Akinci A, Ventura G, Napolitano F, Del Pezzo E, De Siena L (2022) Fast changes in seismic attenuation of the upper crust due to fracturing and fluid migration: the 2016-2017 central Italy seismic sequence. Front Earth Sci 10:909-698
- 18. Gao LS, Biswas NN, Lee LC, Aki K (1983) Effects of multiple scattering on coda waves in three-dimensional medium. Pure Appl Geophys PAGEOPH 121(1):3-15
- 19. Giampiccolo E, Tusa G, Langer H, Gresta S (2002) Attenuation in Southeastern Sicily (Italy) by applying different coda methods. J Seismolog 6(4):487-501
- 20. Giampiccolo E, Del Pezzo E, Tuve T, Di Grazia G, Ibanez JM (2021) 3-D Q-coda attenuation structure at Mt Etna (Italy). Geophys J Int 227(1):544-558
- 21. Gupta SC, Teotia SS, Rai SS, Gautam N (1998) Coda Q estimates in the Koyna Region, India. Pure Appl Geophys 153(2-4):713-731
- 22. Havskov J, Malone S, McClurg D, Crosson R (1989) Coda Q for the state of Washington. Bull Seismol Soc Am 79(4):1024-1038
- 23. Havskov J and Ottemoller L (2003) SEISAN: the earthquake analysis softwares for Windows, Solaris and Linux Version 8.0; Institute of Solid Earth Physics, University of Bergen, Norway
- 24. Hoshiba M (1991) Simulation of multiple-scattered coda wave excitation based on the energy conservation law. Phys Earth Planet Inter 67(1-2):123-136
- 25. Ibanez JM, Del Pezzo E, De Miguel F, Herraiz M, Alguacil G, Morales J (1990) Depth dependent seismic attenuation in the Granada Zone (southern Spain). Bull Seismol Soc Am 80(5):1232-1244
- 26. Jin A, Aki K (1988) Spatial and temporal correlation between Coda Q and Seismicity in China. Bull Seismol Soc Am 78:741-776
- 27. Kaila KL, Krishna VG (1979) A new computerized method for finding effective velocity from reversed reflection traveltime data. Geophysics 44(6):1064-1076
- 28. Kampfmann W, Berckhemer H (1985) High temperature experiments on the elastic and anelastic behaviour of magmatic rocks. Phys Earth Planet Inter 40:223-247
- 29. Knopoff L (1964) Q. Rev Geophys 2:625-660
- 30. Mandal P, Chadha RK (2008) Three-dimensional velocity imaging of the Kachchh seismic zone, Gujarat, India. Tectonophysics 452:1-16
- 31. Mandal P, Horton S (2007) Relocation of aftershocks, focal mechanisms and stress inversion: Implications toward the seismo-tectonics of the causative fault zone of Mw7.6 2001 Bhuj earth- quake (India). Tectonophysics 429:61-78
- 32. Mandal P, Jainendra S, Joshi S, Kumar S, Bhunia R, Rastogi BK (2004) Low coda Qc in the epicentral region of the 2001 Bhuj earthquake of Mw 7.7. Pure Appl Geophys 161:1635-1654. https://doi.org/10.1007/s00024-004-2525-2
- 33. MargerinL CM, Tiggelen B (1998) Radiative transfer and diffusion of waves in a layered medium: New insight into Coda Q. Geophys J Int 134(2):596-612
- 34. Mukhopadhyay S, Sharma J (2010) Crustal scale detachment in the Himalayas: a reappraisal. Geophys J Int 183(2):850-860
- 35. Muthyala Prasad M, Dubey CP (2023) Tectonic and structural elements of Southern Granulite Terrane, South India: Inferences from gravity and magnetic studies. J Asian Earth Sci 256:105823
- 36. Naqvi SM, Rogers JJW (1987) Precambrian Geology of India. Oxford University Press, New York, p 223
- 37. Novelo-Casanova DA, Martmez-Bringas A, Valdes-Gonzalez C (2006) Temporal variations of QC-1 and B-values associated to the December 2000-January 2001 volcanic activity at the Popocatepetl Volcano, Mexico. J Volcanol Geoth Res 152(3-4):347-358
- 38. Padhy S (2005) A scattering model for seismic attenuation and its global applications. Phys Earth Planet Inter 148:1-12
- 39. Padhy S, Subhadra N (2013) Separation of intrinsic and scattering seismic wave attenuation in Northeast India. Geophys J Int 195:1892-1903
- 40. Plavsa D, Collins AS, Foden JD, Clark C (2015) The evolution of a Gondwanan collisional orogen: a structural and geochronological appraisal from the southern granulite terrane, south India. Tectonics 34:820-857
- 41. Ramakrishnan M, Vaidyanadhan R (2010) Geology of India, vol II. Geological Society of India, Bangalore
- 42. Rao BR, Rao PS (1984) Historical seismicity of peninsular India. Bull Seismology Soc Am 74:2519-2533
- 43. Rastogi BK (1992) Seismotectonics Inferred from Earthquakes and Earthquake Sequences in India during the 1980s. Curr Sci 62(1/2):101-108
- 44. Rautian TG, Khalturin VI (1978) The use of the coda for determination of earthquake source spectrum. Bull Seismol Soc Am 68:923-948
- 45. Roecker SW, Tucker B, KingJ HD (1982) Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bull Seismol Soc Am 72(1):129-149. https://doi.org/10.1785/bssa0720010129
- 46. Roy Chowdhury K, Hargraves RB (1981) Deep seismic sounding in India and the region of Continental crust. Nature 291:648-650
- 47. Roy S, Rao RU (2000) Heat flow in the Indian shield. J Geophysl Res: Solid Earth 105(B11):25587-25604. https://doi.org/10.1029/ 2000jb900257
- 48. Saikia U, Rai SS (2018) Seismicity pattern, reference velocity model, and earthquake mechanics of South India. Bull Seismol Soc Am 108(1):116-129
- 49. Saikia U, Rai SS, Dutta S, Bose S, Borah K, Meena R, Subrahmanyam M (2014) Accurate location and focal mechanism of small earth- quakes near Idukki Reservoir, Kerala: implication for earthquake genesis. Curr Sci 107:1885-1891
- 50. Santosh M, Maruyama S, Sato K (2009) Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res 16(2):321-341
- 51. Sato H (1977) Energy propagation including scattering effects single isotropic scattering approximation. J Phys Earth 25(1):27-41
- 52. Sato H (1987) A precursor like change in coda excitation before the Western Nagano earthquake of 1984 in Central Japan. J Geophys Res 92(B2):1356-1360
- 53. Sato H, Ito K (2002) Olivine-Pyroxene-H2O system as a practical ana- logue for estimating the elastic properties of fluid-bearing man- tle rocks at high pressures and temperatures. Geophys Res Lett 29(9):1325. https://doi.org/10.1029/2001GL014212
- 54. Sato H, Shomahmadov AM, Khalturin VI, Rautian TG (1988) Tempo- ral change in spectral coda attenuation associated with the earth- quake of 1983 near Garm, Tadjikistan region in Soviet Central Asia. Zisin (J Seismol Socf Jpn. 2nd Ser.) 41(1):39-46
- 55. Sedaghati F, Pezeshk S (2016) Estimation of the Coda-wave attenua- tion and geometrical spreading in the New Madrid Seismic zone. Bull Seismol Soc Am 106(4):1482-1498. https://doi.org/10.1785/ 0120150346
- 56. Singh SK (2004) Q of the Indian shield. Bull Seismol Soc Am 94(4):1564-1570. https://doi.org/10.1785/012003214
- 57. Singh S, Herrmann RB (1983) Regionalization of crustal coda Q in the continental United States. J Geophys Res 88:527-538
- 58. Takei Y (2002) Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J Geophys Res 107(B2):2043. https://doi.org/ 10.1029/2001JB000522
- 59. Waldhauser F (2001) hypoDD-A program to compute double-differ- ence hypocenter locations. U.S. Geological Survey Open-File Report 01-113, 25 pp. https://pubs.usgs.gov/of/2001/0113/
- 60. Wu RS (1985) Multiple scattering and energy transfer of seismic waves - separation of scattering effect from intrinsic attenuation - I. Theor Model Geophys J Int 82(1):57-80
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee7bf5f9-be7e-4d94-b100-f12ac7e71792
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.