PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tests of methane desorption and emission from samples of hard coal in the context of mine closures through flooding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forecasts of methane emissions during and after flooding a closed gassy hard coal mine and the evaluation of possible methane migration to the surface in post-mining areas, after cutting off the vertical ventilation workings of hard coal mines from the surface, provide valuable information which can help to ensure public safety. This article presents research into the influence of changes in the hydrostatic pressure of a water column in a flooded mine on the volume of methane emission and migration from hard coal seams, during and after the flooding of a closed mine. The tests were conducted based on a modified research method developed by the French National Institute for Industrial Environment and Risks (INERIS), France, and the Central Mining Institute (GIG), Katowice, Poland. A test stand for gas desorption and autoclaves for emissions, under controlled pressure and temperature, were used. The tests were conducted and changes in pressure in the autoclaves over time were observed. The observations led to the conclusion that water inhibits methane desorption and emission from coal to varying extents, depending on the hydrostatic pressure exerted. Based on the conducted tests, developed a model of methane emission into flooded goafs was developed. A method of determining index k2 was also developed, which lowers the forecast volume of methane emission into goafs depending on the value of the hydrostatic pressure of the water column and the level of submersion. Results of the tests form the basis to calculate forecasts in the developed model of methane emission into the goafs of a mine during its closure, which, as a consequence, enables the identification of the level of methane hazard and the selection of preventive measures aimed at combating methane hazard during and after the closure of a gassy mine.
Rocznik
Strony
127--133
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Department of Gas Hazard Control, Central Mining Institute, Plac Gwarków 1, 40-166, Katowice, Poland
  • Department of Gas Hazard Control, Central Mining Institute, Plac Gwarków 1, 40-166, Katowice, Poland
Bibliografia
  • 1. Broughton, P. (2014). Developing approaches to the control of risk from abandoned mine entries. 9th safety seminar, safety managing the challenge of change (pp. 47-61). Sheffield: The Midland Institute of Mining Engineers.
  • 2. Cienfuegos, P., & Loredo, J. (2010). Coalbed methane resources assessment in Asturias (Spain). International Journal of Coal Geology, 83, 366-376. https://doi.org/10.1016/j.coal.2010.05.002.
  • 3. Diaz Aguado, M. B., & Gonzalez Nicieza, C. (2007). Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain. International Journal of Coal Geology, 69, 253-266. https://doi.org/10.1016/j.coal.2006.05.004.
  • 4. Duda, A., & Krzemień, A. (2018). Forecast of methane emission from closed underground coal mines exploited by longwall mining - a case study of Anna coal mine. Journal of Sustainable Mining, 17(4), 184-194. https://doi.org/10.1016/j.jsm.2018.06.004.
  • 5. Dvořaček, J., & Slivka, V. (2004). Environmental and safety problems of ostrava-karvina district. Zeszyty naukowe Politechniki Śląskiej. Seria Górnictwo, (260), 551-558.
  • 6. Heitfeld, M., Rosner, P., Muhlenkamp, M., & Sahl, H. (2004). Bergschaden im Erkelenzer Steinkohlenrevier. Altbergbaukolloquium (pp. 281-295). Montanuniversitat Leoben.
  • 7. Jackson, N. W. (2000). Our mining heritage - Presidential address delivered to the north-East branch of the Institution of Mining and metallurgy on 21 oct. 1999 at newcastle upon tyne (UK). IM&M - July, 185-190 2000.
  • 8. Kral, V., Paletnik, M., & Novotny, R. (1998). Methane from closed-down mines in the soil. Proceedings of the international conference on coal-bed methane technologies of recovery and utilisation Katowice: Głowny Instytut Gornictwa x-x.
  • 9. Krause, E. (2008). Prognozowanie wydzielania metanu do rejonow poeksploatacyjnych kopalń czynnych i likwidowanych przez zatopienie (Forecasting of methane emissions to the gob areas of operating coal mines and those already liquidated by flooding). Zeszyty Naukowe Politechniki Śląskiej. Seria Górnictwo, (283), 129-137.
  • 10. Krause, E. (2009). Metoda oceny zagrożenia metanowego projektowanych i eksploatowanych ścian w kopalniach węgla kamiennego (Methane hazard assessment method of designed and exploited walls in coal mines)(Postdoctoral dissertation)Katowice: Głowny Instytut Gornictwa.
  • 11. Krause, E., & Pokryszka, Z. (2013). Investigations on methane emission from flooded workings of closed coal mines. Journal of Sustainable Mining, 12(2), 40-45. https://doi.org/10.7424/jsm130206.
  • 12. Krause, E., & Łukowicz, K. (2000). Dynamiczna prognoza metanowości bezwzględnej ścian (poradnik techniczny) (Dynamic prediction of absolute methane bearing capacity of the longwalls (technical guide)). Instrukcja głównego instytutu górnictwa (pp. 14). Katowice: Głowny Instytut Gornictwa.
  • 13. Krzemień, A., Krause, E., Wysocka, M., Koteras, A., Więckol-Ryk, A., Wagner, J., et al. (2017). Management of environmental risks during and after mine closure (MERIDA). First annual report. Research Fund for coal and Steel Contract No. RFCR-CT-2015-20100004.
  • 14. Krzemień, A., Suarez Sanchez, A., Riesgo Fernandez, P., Zimmermann, K., & Gonzalez Coto, F. (2016). Towards sustainability in underground coal mines closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, 139, 1044-1056. https://doi.org/10.1016/j.jclepro.2016.08.149.
  • 15. Laurence, D. (2011). Establishing a sustainable mining operation: An overview. Journal of Cleaner Production, 19(2-3), 278-284. https://doi.org/10.1016/j.jclepro.2010.08.019.
  • 16. Novotny, R., Platenik, M., Takla, G., & Kral, V. (2001). Reduction of uncontrollable mine gas emission in the Czech part of Upper Silesian hard coal basin devastated by past mining activity. Proceedings of the 7th international mine ventilation congress, june 17-22, 2001, cracow, Poland. Cracow, Poland.: Research & Development Center for Electrical Engineering and Automation in Mining (EMAG).
  • 17. Pokryszka, Z., & Tauziede, C. (2000). Evaluation of gas emission from closed mines surface to atmosphere. Environmental issues and management of waste in energy and mineral production: Proceedings of the sixth international conference on environmental issues and management of waste in energy and mineral production, SWEMP 2000, calgary, alberta, Canada, may 30-june 2, 2000. Rotterdam, Netherlands; Brookfield, VT, USA: A.A. Balkema.
  • 18. Pokryszka, Z., Tauziede, C., Lagny, C., Guise, Y., Gobillot, R., Planchenault, J., et al. (2005). Gas migration from closed coal mines to the surface. Risk assessment methodology and prevention means. Post-Mining 2005, November 16-17, Nancy, France, 1-15. Retrieved Day Month, Year from https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/027/38027836.pdf?r=1&r=1.
  • 19. Robinson, R. (2000). Mine gas hazards in the surface environment. Transactions of the institution of mining and metallurgy, Section A, Mining Technology, 109, 228-238.
  • 20. Zawisza, L., Macuda, J., & Chećko, J. (2005). Ocena zagrożenia gazami kopalnianymi na terenie likwidowanej kopalni KWK “Niwka-Modrzejow” (Evaluation of mine's gases hazard in the liquidated hard coal mine “Niwka-Modrzejow”). Wierntnictwo, Nafta, Gaz, 22(1), 461-467.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee6d301b-7029-4ed7-9ab0-5d51814b813b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.