PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal biomarker selection using adaptive Social Ski-Driver optimization for liver cancer detection

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most essential biomolecule found in the human body is a biomarker; with these biomarkers, the abnormal biological processes and disease states of each patient can be accurately determined. Nowadays, the biomarker applications are frequently applied during clinical trials to identify cancer patients. In this method, the major significance of miRNA biomarkers during liver cancer detection is analysed. For such analysis, a deep learning technique is introduced along with optimization algorithms. Six different filter-based approaches are considered for feature selection they are Chi-Squared (Chi2), Information Gain (IG), Gain Ratio (GR), Symmetrical Uncertainty (SU), RelieF (RF) and RF-W. Two high ranked features from these selected features are extracted by the Modified Social Ski-Driver optimization (MSSO) algorithm. With that high ranked features, the liver cancer tissues are accurately detected by Sunflower Optimization-based deep neural network (DSFNN) approach. The analysis part concludes that a miRNA biomarker having a higher rank provide better cancer detection results than other low-ranked biomarkers. In this work, 10 different, clinically verified miRNA biomarkers are selected for this detection process. The data required for liver cancer detection is selected from NCBI-GEO database. The performance of this entire cancer detection process is evaluated by accuracy, sensitivity, precision, specificity, and Area under curve (AUC) metrics. Furthermore, we also determined that the usage of 10, 5, and 3 clinically verified miRNAs provide better cancer detection results than other miRNAs. Among all clinically verified miRNAs, the selected three biomarkers (hsa-mir-10b, hsa-let-7c, hsa-mir- 145) has attained higher recognition result. The performance result attained by the proposed DSFNN is compared with five different algorithms for both training and validation datasets.
Twórcy
  • R.M.K. Engineering College, Anna University, R.M.S Nagar, Kavaraipettai, 601206, Gummidipoondi-Taluk, Thiruvallur, India
  • R.M.K. Engineering College, Anna University, R.M.S Nagar, Kavaraipettai, Gummidipoondi-Taluk, Thiruvallur, India
Bibliografia
  • [1] Chaiteerakij R, Zhang X, Addissie BD, Mohamed EA, Harmsen WS, Theobald PJ, et al. Combinations of biomarkers and M ilan criteria for predicting hepatocellular carcinoma recurrence after liver transplantation. Liver Transplant 2015;21(5):599–606.
  • [2] Mohankumar S, Patel T. Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. Brief Funct Genomics 2015;15(3):249–56.
  • [3] Bissolati M, Sandri MT, Burtulo G, Zorzino L, Balzano G, Braga M. Portal vein-circulating tumor cells predict liver metastases in patients with resectable pancreatic cancer. Tumor Biol 2015;36(2):991–6.
  • [4] Sia SD, Villanueva A, Friedman SL, Llovet Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 2017;152(4):745–61.
  • [5] Gupta SC, Tripathi YN. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer 2017;140(9):1955–67.
  • [6] Hu Z, Tang J, Wang Z, Zhang K, Zhang L, Sun Q. Deep learning for image-based cancer detection and diagnosis–a survey. Pattern Recognit 2018;83:134–49.
  • [7] Özyurt F, Tuncer T, Avci E, Koç M, Serhatlioglu I. Novel liver image classification method using perceptual hash-based convolutional neural network. Arab J Sci Eng 2019;44(4):3173–82.
  • [8] Stepien M, Fedirko V, Duarte-Salles T, Ferrari P, Freisling H, Trepo E, et al. Prospective association of liver function biomarkers with development of hepatobiliary cancers. Cancer Epidemiol 2016;40:179–87.
  • [9] Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal 2015;107:63–74.
  • [10] Liu H, Xu Y, Zhang Q, Yang H, Shi W, Liu Z, et al. Prognostic significance of TBL1XR1 in predicting liver metastasis for early stage colorectal cancer. Surg Oncol 2017;26(1):13–20.
  • [11] Kalinathan L, Kathavarayan RS, Nagendram D, Vij M, Rela M. Segmentation of hepatocellular carcinoma and dysplastic liver tumors in histopathology images using area based adaptive expectation maximization. Multimed Tools Appl 2018;77(2):1761–82.
  • [12] Moghbel M, Mashohor S, Mahmud R, Saripan MIB. Review of liver segmentation and computer assisted detection/ diagnosis methods in computed tomography. Artif Intell Rev 2018;50(4):497–537.
  • [13] Sreeja P, Hariharan S. An improved feature based image fusion technique for enhancement of liver lesions. Biocybern Biomed Eng 2018;38(3):611–23.
  • [14] Vivanti R, Joskowicz L, Lev-Cohain N, Ephrat A, Sosna J. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies. Med Biol Eng Comput 2018;56(9):1699–713.
  • [15] Ahmad R, Choubey NS. Review on image enhancement techniques using biologically inspired artificial bee colony algorithms and its variants. Biologically Rationalized Computing Techniques for Image Processing Applications. Cham: Springer; 2018. p. 249–71.
  • [16] Wang J, Zhou II M, Li III Q, Sun IV L. An automatic liver fibrosis qualitative analysis method based on hyperspectral images. Tenth International Conference on Digital Image Processing (ICDIP 2018), 10806, 1080634; 2018.
  • [17] Derbel H, Kobeiter H, Pizaine G, Ridouani F, Luciani A, Radaelli A, et al. Accuracy of a cone-beam CT virtual parenchymal perfusion algorithm for liver cancer targeting during intra-arterial therapy. J Vasc Interv Radiol 2018;29 (2):254–61.
  • [18] Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 2018;37(12):2663–74.
  • [19] Perera R, Nittayacharn P, Cooley M, Jung O, Exner AA. Ultrasound contrast agents and delivery systems in cancer detection and therapy. Advances in Cancer Research, 139. Academic Press; 2018. p. 57–84.
  • [20] Singh V, San Yeoh B, Chassaing B, Xiao X, Saha P, Olvera RA. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 2018;175(3):679–94.
  • [21] Rehman O, Zhuang H, Muhamed Ali A, Ibrahim A, Li Z. Validation of miRNAs as breast Cancer biomarkers with a machine learning approach. Cancers 2019;11(3):431.
  • [22] Huang Y, Zhu J, Li W, Zhang Z, Xiong P, Wang H, et al. Serum microRNA panel excavated by machine learning as a potential biomarker for the detection of gastric cancer. Oncol Rep 2018;39(3):1338–46.
  • [23] Lopez-Rincon A, Martinez-Archundia M, Martinez-Ruiz GU, Schoenhuth A, Tonda A. Automatic discovery of 100- miRNA signature for cancer classification using ensemble feature selection. BMC Bioinf 2019;20(1):480.
  • [24] Ding L, Feng Z, Bai Y. Clustering analysis of microRNA and mRNA expression data from TCGA using maximum edge-weighted matching algorithms. BMC Med Genomics 2019;12 (1):117.
  • [25] Dong RZ, Yang X, Zhang XY, Gao PT, Ke AW, Sun HC, et al. Predicting overall survival of patients with hepatocellular carcinoma using a three-category method based on DNA methylation and machine learning. J Cell Mol Med 2019;23 (5):3369–74.
  • [26] Kotlarchyk A, Khoshgoftaar T, Pavlovic M, Zhuang H, Pandya AS. Identification of microRNA biomarkers for cancer by combining multiple feature selection techniques. J Comput Methods Sci Eng 2011;11(5-6):283–98.
  • [27] Tharwat A., and Gabel T. Parameter's optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications 1-14 2019.
  • [28] Zhang YD, Zhang YD, Hou XX, Chen H, Wang SH. Seven- layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimed Tools Appl 2018;77(9):10521–38.
  • [29] Gomes GF, Da Cunha SS, Ancelotti AC. A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng Comput 2019;35(2):619–26.
  • [30] Kaur H, Dhall A, Kumar R, Raghava GP. Identification of platform-independent diagnostic biomarker panel for hepatocellular carcinoma using large-scale transcriptomics data. Front Genet 2019;10:1306.
  • [31] Asakura K, Kadota T, Matsuzaki J, Yoshida Y, Yamamoto Y, Nakagawa K, et al. A miRNA-based diagnostic model predicts resectable lung cancer in humans with high accuracy. Commun Biol 2020;3(1):1–9.
  • [32] Sajic T, Ciuffa R, Lemos V, Xu P, Leone V, Li C, et al. A new class of protein biomarkers based on subcellular distribution: application to a mouse liver cancer model. Sci Rep 2019;9(1):1–20.
  • [33] Chia TS, Wong KF, Luk JM. Molecular diagnosis of hepatocellular carcinoma: trends in biomarkers combination to enhance early cancer detection. Hepatoma Res 2019.
  • [34] Zhu L, Li J, Gong Y, Wu Q, Tan S, Sun D, et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer 2019;18(1):74.
  • [35] Liu XN, Cui DN, Li YF, Liu YH, Liu G, Li L. Multiple ‘‘Omics’’ data-based biomarker screening for hepatocellular carcinoma diagnosis. World J Gastroenterol 2019;25(30):4199.
  • [36] Li L, Zhao H, Chen B, Huang K, Hao Z, Fan Z, et al. Noninvasive identification of immune-related biomarkers in hepatocellular carcinoma. J Oncol 2019;2019.
  • [37] Yin L, He N, Chen C, Zhang N, Lin Y, Xia Q. Identification of novel blood-based HCC-specific diagnostic biomarkers for human hepatocellular carcinoma. Artif Cells Nanomed Biotechnol 2019;47(1):1908–16.
  • [38] Jin Y, Wong YS, Goh BK, Chan CY, Cheow PC, Chow PK, et al. Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci Rep 2019;9(1):1–12.
  • [39] Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol: WJG 2015;21(37):10573.
  • [40] Sengupta S, Parikh ND. Biomarker development for hepatocellular carcinoma early detection: current and future perspectives. Hepat Oncol 2017;4(4):111–22.
  • [41] Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019;1–16.
  • [42] Duan J, Wu Y, Liu J, Zhang J, Fu Z, Feng T, et al. Genetic biomarkers for hepatocellular carcinoma in the era of precision medicine. J Hepatocell Carcinoma 2019;6:151.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee6d1fe6-c4ed-4cc7-afa7-1e29069aff85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.