PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on Resonator and Muffler Configuration Acoustics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, resonators are widely used in automobile, industrial applications, aerospace engineering, and some other fields. One of the unique characteristics of resonators which made them highly convenient is their acoustic capability to attenuate noise without having to use any acoustic absorptive material. The device acts by manipulating the sound waves to create mismatch impedance. Recent studies also suggest that the typical bulk size resonator with narrow frequency bandwidth is not the only option anymore, since there are newly designed resonators that are capable of having wide attenuation bandwidth and are smaller in size. Numerical and experimental measures were executed accordingly with the same purpose to obtain efficient noise attenuation results from varying resonators’ and mufflers’ configuration in terms of quantity, types, and geometry. The aim of this review is to summarize recent developments on resonator study and to try highlighting some noteworthy issues that need to be unraveled by future research. Helmholtz resonator, Quarter wave tube, Herschel-Quincke tube and helicoidal resonator are part of the numerous resonator studies that will be covered in this paper.
Słowa kluczowe
Rocznik
Strony
369--384
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Automotive Development Centre (ADC), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
  • Automotive Development Centre (ADC), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
autor
  • Automotive Development Centre (ADC), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
autor
  • Automotive Development Centre (ADC), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
Bibliografia
  • 1. Abbad A. (2016), Numerical investigations on a tunable Helmholtz resonator: integration of a passive polimer membrane in a Helmholtz resonator, SAE Technical Paper.
  • 2. Alonso J. S., Burdisso R. A., Ivers D., Kwan H. W. (2013), Adaptive concepts for Herschel-Quincke waveguides, Journal of Vibration and Acoustics, 135, 3, 031016.
  • 3. Aly K., Ziada S. (2016), Review of flow-excited resonance of acoustic trapped modes in ducted shallow cavities, Journal of Pressure Vessel Technology, 138, 4, 040803.
  • 4. Cai C., Mak C. M. (2016), Noise control zone for a periodic ducted Helmholtz resonator system, The Journal of the Acoustical Society of America, 140, 6, EL471-EL477.
  • 5. Cai C., Mak C. M., Shi X. (2017), An extended neck versus a spiral neck of the Helmholtz resonator, Applied Acoustics, 115, 74-80.
  • 6. Chiu M.-C. (2010), Numerical optimization of a threechamber muffler hybridized with a side inlet and a perforated tube by SA method, Journal of Marine Science and Technology, 18, 4, 484-495.
  • 7. Chiu M.-C. (2014), Acoustical treatment of multi-tone broadband noise with hybrid side-branched mufflers using a simulated annealing method, Journal of Low Frequency Noise, Vibration and Active Control, 33, 1, 9-111.
  • 8. Coulon J.-M., Atalla N., Desrochers A. (2016), Optimization of concentric array resonators for wide band noise reduction, Applied Acoustics, 113, 109-115.
  • 9. Duan C. (2008), Tuned silencer using adaptive variable volume resonator, SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 1, 2008-01-0896, 296-300.
  • 10. Erol H., Meric¸ C. (2009), Application of resonators and a side branch duct with an expansion chamber for broad band noise control, Noise Control Engineering Journal, 57, 5, 476-492.
  • 11. Fritschi L., Brown A., Kim R., Schwela D., Kephalopolous S. (2011), Burden of disease from environmental noise: Quantification of healthy years life lost in Europe, World Health Organisation.
  • 12. Guo R., Tang W.-B. (2017), Transfer matrix methods for sound attenuation in resonators with perforated intruding inlets, Applied Acoustics, 116, 14-23.
  • 13. Herrin D. W., Hua X., Zhang Y., Elnady T. (2014), The proper use of plane wave models for muffler design, SAE International Journal of Passenger Cars-Mechanical Systems, 7, 2014-01-0016, 927-932.
  • 14. Hong Z., Dai X., Zhou N., Sun X., Jing X. (2014), Suppression of Helmholtz resonance using inside acoustic liner, Journal of Sound and Vibration, 333, 16, 3585-3597.
  • 15. Howard C. Q., Craig R. A. (2014a), An adaptive quarter-wave tube that uses the sliding-Goertzel algorithm for estimation of phase, Applied Acoustics, 78, 92-97.
  • 16. Howard C. Q., Craig R. A. (2014b), Noise reduction using a quarter wave tube with different orifice geometries, Applied Acoustics, 76, 180-186.
  • 17. Huang L. (2009), Attenuation of low frequency duct noise by a flute-like silencer, Journal of Sound and Vibration, 326, 1, 161-176.
  • 18. Karlsson M., Glav R. (2007), The flow reversal resonator, SAE Technical Paper, No. 2007-01-2203.
  • 19. Kurdi M. H., Duncan G. S., Nudehi S. S. (2014), Optimal design of a Helmholtz resonator with a flexible end plate, Journal of Vibration and Acoustics, 136, 3, 031004.
  • 20. Łapka W. (2014), Transmission loss and pressure drop of selected range of helicoidal resonators, Vibrations in Physical Systems, 26, 121-128.
  • 21. Liu X. G., Yin C. C. (2011), A study of the Herschel- Quincke tube concept, [In:] Advanced Materials Research, Vol. 199, pp. 1024-1030, Trans Tech Publications.
  • 22. Munjal M. (1990), Advances in the acoustics of flow ducts and mufflers, Sadhana, 15, 2, 57-72.
  • 23. Munjal M. (2013), Recent advances in muffler acoustics, International Journal of Acoustics and Vibration, 18, 2, 71-85.
  • 24. Nudehi S. S., Duncan G. S., Farooq U. (2013), Modeling and experimental investigation of a Helmholtz resonator with a flexible plate, Journal of Vibration and Acoustics, 135, 4, 041102.
  • 25. Ouédraogo B., Maréchal R., Ville J. M., Perrey-Debain E. (2016), Broadband noise reduction by circular multi-cavity mufflers operating in multimodal propagation conditions, Applied Acoustics, 107, 19-26.
  • 26. Reddi C. V., Padmanabhan C. (2016), Design relations and end correction formula for multi-orifice Helmholtz resonators with intrusions, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230, 6, 939-947.
  • 27. Sanada A., Tanaka N. (2013), Extension of the frequency range of resonant sound absorbers using two-degree-of-freedom Helmholtz-based resonators with a flexible panel, Applied Acoustics, 74, 4, 509-516.
  • 28. Seo S.-H., Kim Y. H., Kim K. J. (2016), Transmission loss of a silencer using resonator arrays at high sound pressure level, Journal of Mechanical Science and Technology, 30, 2, 653-660.
  • 29. Shi X., Mak C.-M. (2015), Helmholtz resonator with a spiral neck, Applied Acoustics, 99, 68-71.
  • 30. Shi X., Mak C.-M. (2017), Sound attenuation of a periodic array of micro-perforated tube mufflers, Applied Acoustics, 115, 15-22.
  • 31. Tang S. (2010), On sound transmission loss across a Helmholtz resonator in a low Mach number flow duct, The Journal of the Acoustical Society of America, 127, 6, 3519-3525.
  • 32. Tang S. (2012), Narrow sidebranch arrays for low frequency duct noise control, The Journal of the Acoustical Society of America, 132, 5, 3086-3097.
  • 33. Tang S., Ng C. H., Lam E. Y. L. (2012), Experimental investigation of the sound absorption performance of compartmented Helmholtz resonators, Applied Acoustics, 73, 9, 969-976.
  • 34. Tao Z., Seybert A. (2003), A review of current techniques for measuring muffler transmission loss, SAE Technical Paper, No. 2003-01-1653.
  • 35. Wang C., Huang L. (2012), Investigation of a broadband duct noise control system inspired by the middle ear mechanism, Mechanical Systems and Signal Processing, 31, 284-297.
  • 36. Wang X., Mak C.-M. (2012), Wave propagation in a duct with a periodic Helmholtz resonators array, The Journal of the Acoustical Society of America, 131, 2, 1172-1182.
  • 37. Wang X., Mak C.-M. (2014), Disorder in a periodic Helmholtz resonators array, Applied Acoustics, 82, 1-5.
  • 38. Wang X., Zhu W., Zhou Y. (2016), Sound transmission in a duct with a side-branch tube array mounted periodically, The Journal of the Acoustical Society of America, 139, 6, EL202-EL208.
  • 39. Wu C., Chen L., Ni J., Xu J. (2016), Modeling and experimental verification of a new muffler based on the theory of quarter-wavelength tube and the Helmholtz muffler, SpringerPlus, 5, 1, 1366.
  • 40. Xu M., Selamet A., Kim H. (2010), Dual Helmholtz resonator, Applied Acoustics, 71, 9, 822-829.
  • 41. Yang D., Wang X., Zhu M. (2014), The impact of the neck material on the sound absorption performance of Helmholtz resonators, Journal of Sound and Vibration, 333, 25, 6843-6857.
  • 42. Yu H., Tang S. (2017), Low frequency interactions between coupled narrow sidebranch arrays and the resulted sound transmission losses, Applied Acoustics 117, 51-60.
  • 43. Zhao D. (2012), Transmission loss analysis of a parallel-coupled Helmholtz resonator network, AIAA Journal, 50, 6, 1339-1346.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee6c665e-1b64-48a3-9856-e1236819e159
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.