Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Poprawa wydajności kąta nachylenia samolotu za pomocą adaptacyjnego kontrolera PID rzędu ułamkowego
Języki publikacji
Abstrakty
Fractional calculus has been rediscovered by scientists and engineers in the last two decades, and applied in an increasing number of fields, namely control theory. The current research work presents the use of the fractional adaptive PID controller approach optimized by a genetic algorithm to improve the performances (rise time, setting time, overshoot, and mean absolute error) for aircraft by introducing a fractional order integrator and differentiator in the classical feedback adaptive PID controller. To validate the arguments, the effectiveness and performance analysis of the proposed fractional order adaptive PID controller optimized by a genetic algorithm have been studied in comparison to the classical adaptive PID controller. Numerical simulation and analysis are presented to verify the best controller. The fractional order adaptive PID gives the best results in terms of settling time, rise time, overshoot, and mean absolute error. This approach can also be generalized to other fractional and integer systems in order to improve their performances and noise rejection.
Rachunek ułamkowy został na nowo odkryty przez naukowców i inżynierów w ciągu ostatnich dwóch dekad i stosowany w coraz większej liczbie dziedzin, a mianowicie w teorii sterowania. Obecna praca badawcza przedstawia zastosowanie podejścia adaptacyjnego regulatora PID ułamkowego zoptymalizowanego przez algorytm genetyczny w celu poprawy wydajności (czas narastania, czas ustawiania, przeregulowanie i średni błąd bezwzględny) dla samolotów poprzez wprowadzenie integratora i różniczkowania ułamkowego rzędu w klasycznym adaptacyjnym regulatorze PID ze sprzężeniem zwrotnym . Aby potwierdzić te argumenty, przeprowadzono analizę skuteczności i wydajności proponowanego adaptacyjnego regulatora PID ułamkowego rzędu zoptymalizowanego algorytmem genetycznym w porównaniu z klasycznym adaptacyjnym regulatorem PID. Przedstawiono symulację i analizę numeryczną w celu weryfikacji najlepszego sterownika. Adaptacyjny PID ułamkowego rzędu daje najlepsze wyniki pod względem czasu ustalania, czasu narastania, przeregulowania i średniego błędu bezwzględnego. To podejście można również uogólnić na inne systemy ułamkowe i całkowite w celu poprawy ich wydajności i tłumienia szumów.
Wydawca
Czasopismo
Rocznik
Tom
Strony
98--101
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Electrical Engineering Department, University of Bouira - Algeria
autor
- Electrical Engineering Department, Mohamed Boudiaf University of M’sila - Algeria
- Applied Automation Laboratory, F.H.C., University of Boumerdes, 35000 Boumerdes, Algeria
autor
- Electrical Engineering Department, Mohamed Boudiaf University of M’sila - Algeria
autor
- Electrical Engineering Department, Mohamed Boudiaf University of M’sila - Algeria
- GE laboratory, University of M’sila, 28000 – Algeria
Bibliografia
- [1] Monje.C. A., “Fractional-order systems and controls: fundamentals and applications,” Springer, (2010).
- [2] Chen. Y., Vinagre. B. M., and Podlubny .I, “Continued fraction expansion approaches to discretizing fractional order derivatives an expository review,” in Nonlinear Dynamics, vol. 38, no.1–4, (2004), 155-170.
- [3] Bhatt. R., Parmar .G , Gupta .R, Sikander. A, “Application of stochastic fractal search in approximation and control of LTI systems,” In: Microsyst. Technol. Vol.25,( 2019), 105-114.
- [4] Idir A., Canale L., Tadjer S. A., Chekired F., "High Order Approximation of Fractional PID Controller based on Grey Wolf Optimization for DC Motor,". 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Jun 2022, Prague, Czech Republic. pp.1–6.
- [5] Srinivasan .S, Karunanithi T., “ Design of PI controller for bioreactors for maximum production rate”, International Journal of Chem-Tech Research, Vol.2, No.3, (2010), 1679-1685.
- [6] Bensafia Y., Khettab K., Idir A.,“An Improved Robust Fractionalized PID Controller for a Class of Fractional-Order Systems with Measurement Noise”, International Journal of Intelligent Engineering and Systems, (2018), vol.11, no.2, pp. 200–207.
- [7] Podlubny, I., Dorcak, L., & Kostial, I., “On fractional derivatives, fractional-order dynamic systems and PI/sup/spl lambda//D/sup/spl mu//-controllers”., In Proceedings of the 36th IEEE Conference on Decision and Control, (1997), vol. 5, pp. 4985-4990.
- [8] Idir A., Kidouche M., Bensafia Y., Khettab K., Tadjer S.A.,“Speed control of DC motor using PID and FOPID controllers based on differential evolution and PSO”, Int. J. Intell. Eng. Syst., (2018), vol.11, no.3, pp. 241–249.
- [9] Bensafia Y., Idir A., Khettab K., Akhtar M. S., Zahra S., “Novel Robust Control Using a Fractional Adaptive PID Regulator for an unstable system”, Indonesian Journal of Electrical Engineering and Informatics (IJEEI), (2022), 10(4), 847-855.
- [10] Maciej . S, “ Another Approach to the Fractional Order Derivatives, Przegląd Elektrotechniczny, 91 (2015),nr. 2, 153-156.
- [11] Khettab K., Ladaci S., Bensafia Y., “Fuzzy adaptive control of fractional order chaotic systems with unknown control gain signusing a fractional order Nussbaum gain ”, In: IEEE/CAA Journal of Automatica Sinica, vol. 4(2), (2019), 1-8.
- [12] Ullah N ., Wang S., Khattak M., “Fractional Order Fuzzy Backstepping Torque Control of Electrical Load Simulator”, Przegląd Elektrotechniczny, 89 (2013),nr. 5, 237-240.
- [13] Haneet K., Parul S., Pawanesh A., “ Analysis of fitness function in genetic algorithms. Journal of Scientific and Technical Advancements", V 1, No. 3,(2015), 87-89.
- [14] Idir A., Canale L., Bensafia Y., Khettab, K. “Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System”, Energies, (2022) 15(23), 8973.
- [15] Djouambi A., Charef A., Voda Besançon A., “ Fractional Order Robust Control Based on Bodes Ideal Transfer Function”, RSJESA, vol. 42, Fractional order systems, (2008), 999-1014.
- [16] Oustaloup A., Levron F., Mathieu B., Nanot F., “ Frequency-Band Complex Non integer Differentiator: Characterization and Synthesis”, IEEE Transactions on Circuits and Systems I, vol.47, n°1, (2000), 25-39.
- [17] Ruszewski, A., & Sobolewski, A. (2012). Comparative studies of control systems with fractional controllers. Przegląd Elektrotechniczny, 88(4b), 204-208.
- [18] Bensafia Y., Khettab K., Idir A., "A Novel Fractionalized PID controller Using The Sub-optimal Approximation of FOTF," Algerian Journal of Signals and Systems, (2022), vol.7, no.1, pp. 21–26.
- [19] Oustaloup. A, Sabatier . J, Lanusse .P, " From fractal robustness to CRONE control”, Fractionnal Calculus and applied Analysis, (1999), 1-30.
- [20] Oustaloup . A, "La Dérivation Non Entière : Théorie, Synthèse et applications ”, Hermès: Paris, (1995).
- [21] Oustaloup . A, Mathieu. B , " La commande CRONE : du scalaire au multivariable ”, HERMES, Paris,(1999).
- [22] Neçaibia . A, Ladaci S., Charef . A, Loiseau. J.J, ‘‘Fractional order extremum seeking approach for maximum power point tracking of Photo-Voltaic panels”, Frontiers in Energy ; V 9, No.1, (2015), 43–53.
- [23] Dadras . S, Momeni H.R., ‘‘ Control of a fractional-ordereconomical system ”, Physica 389,( 2010), 2434–2442.
- [24] Axtell . M, Bise . M.E, " Fractional calculus applications in control systems ”, the IEEE National Aerospace and Electronics Conference, New York, USA, (1990), 563-566.
- [25] Calderon . A. J., Vinagre. B.M. and Feliu . V , “ Fractional order control strategies for power electronic buck converters ”, Signal Processing, vol. 86, (2006), 2803-2819.
- [26] Bensafia .Y, Ladaci .S, Khettab .K, “ Using a Fractionalized Integrator for Control Performance Enhancement ”, International Journal of Innovative Computing, Information and Control,( 2015).
- [27] Idir A., Bensafia Y., Khettab K., "Design of an Optimally Tuned Fractionalized PID Controller for DC Motor Speed Control Via a Henry Gas Solubility Optimization Algorithm", Int. J. Intell. Eng. Syst., (2022), vol.15, pp. 59–70.
- [28] Tenreiro Machado . J. A., “ Calculation of Fractional Derivatives of Noisy Data with Genetic Algorithms”, Nonlinear Dynamics, Springer, 57(1-2), (2009), 253-260.
- [29] Kaçti . V, Ekinci .S, İzci .D., “ Efficient Controller Design for Aircraft Pitch Control System Using Henry Gas Solubility Optimization ”, DUJE, vol. 11, No.3, (2020), 953-964.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee64f893-71ac-461a-a503-1a89cef9da4d