PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance and Detonation Characteristics of Polyurethane Matrix Bonded Attractive Nitramines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several cast-cured plastic bonded explosives (PBXs) based on cyclic nitramines bonded by a polyurethane matrix have been prepared and studied. The nitramines were ε-CL20 (ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, ε-HNIW), BCHMX (bicyclo-HMX, cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane). The detonation velocities were measured experimentally. The brisance of the prepared compositions was determined by the Kast method. The penetration performance of shaped charges filled with the prepared compositions was measured experimentally. The detonation parameters of the studied compositions and the individual explosives were calculated using the EXPLO5 thermodynamic code. It was concluded that CL20-HTPB has the highest detonation characteristics and performance of all of the prepared PBXs. BCHMX-HTPB is an interesting PBX with performance and detonation characteristics higher than those of RDX-HTPB. A linear relationship between the detonation pressures of the prepared PBXs and their performances in terms of the explosive brisance was observed; while the penetration depths formed by the shaped charge jets depended on the Gurney velocity of the studied PBXs samples.
Słowa kluczowe
Rocznik
Strony
77--89
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
autor
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
autor
  • Technical Research Center, Cairo, Egypt
Bibliografia
  • [1] Agrawal, J. High Energy Materials: Propellants, Explosives and Pyrotechnics. John Wiley & Sons, 2010; ISBN 978-3-527-32610-5.
  • [2] Singh, A.; Kumar, M.; Soni, P.; Singh, M.; Srivastava, A. Mechanical and Explosive Properties of Plastic Bonded Explosives Based on Mixture of HMX and TATB. Def. Sci. J. 2013, 63(6): 622-629.
  • [3] Elbeih, A.; Zeman, S. Characteristics of Melt Cast Compositions Based on Cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5d]imidazole (BCHMX)/TNT. Cent. Eur. J. Energ. Mater. 2014, 11(4): 487-499.
  • [4] Willey, T.; Lauderbach, L.; Gagliardi, F.; Buuren, F.; Glascoe, E.; Tringe, J.; Lee, J.; Springer, K.; Ilavsky, J. Mesoscale Evolution of Voids and Microstructural Changes in HMX-Based Explosives During Heating through the β-δ Phase Transition. J. Appl. Phys. 2015, 118(5): 055901.
  • [5] Shi, X.; Wang, J.; Li, X.; An, C. Preparation and Characterization of HMX/Estane Nanocomposites. Cent. Eur. J. Energ. Mater. 2014, 11(3): 433-442.
  • [6] Elbeih, A.; Zeman, S.; Pachman, J.; Vavra, P.; Trzcinski, W.; Suceska, M.; Akstein, Z. Study of Plastic Explosives Based on Attractive Cyclic Nitramines. Part II. Detonation Characteristics of Explosives with Polyfluorinated Binders. Propellants Explos. Pyrotech. 2013, 38: 238-243.
  • [7] Thompson, D.; Deluca, R.; Archuleta, J.; Brown, G.; Koby, J. Taylor Impact Tests on PBX Composites: Imaging and Analysis. J. Phys.: Conf. Ser. 2014, 500: 112062.
  • [8] Meyer, R.; Köhler, J.; Homburg, A. Explosives. 7th ed., Wiley-VCH, Weinheim, 2016; ISBN 978-3-527-33776-7.
  • [9] Elbeih, A.; Zeman, S.; Jungova, M.; Vavra, P.; Akstein, Z. Effect of Different Polymeric Matrices on Some Properties of Plastic Bonded Explosives. PropellantsExplos. Pyrotech. 2012, 37(6): 676-684.
  • [10] Yan, Q.-L.; Zeman, S.; Elbeih, A.; Akstein, Z. The Influence of the Semtex Matrix on the Thermal Behavior and Decomposition Kinetics of Cyclic Nitramines. Cent. Eur. J. Energ. Mater. 2013, 10(4): 509-528.
  • [11] Elbeih, A.; Zeman, S.; Jungova, M.; Akstein, Z. Effect of Different Polymeric Matrices on the Sensitivity and Performance of Interesting Cyclic Nitramines. Cent. Eur. J. Energ. Mater. 2012, 9(2): 131-138.
  • [12] Simpson, R.; Urtiew, P.; Ornellas, D.; Hoffman, D. CL‐20 Performance Exceeds that of HMX and Its Sensitivity is Moderate. Propellants Explos. Pyrotech. 1997, 22(5): 249-255.
  • [13] Li, Z.; Wang, Y.; Zhang, Y.; Liu, L.; Zhang, S. CL-20 Hosted in Graphene Foam as a High Energy Material with Low Sensitivity. RSC Advances 2015, 5(120): 98925-98928.
  • [14] Xu, X.-J.; Xiao, H.-M.; Xiao, J.-J.; Zhu, W.; Huang, H.; Li, J.-S. Molecular Dynamics Simulations for Pure ε-CL-20 and ε-CL-20-based PBXs. J. Phys. Chem. B 2006. 110(14): 7203-7207.
  • [15] Klasovitý, D.; Zeman, S. Process for Preparing cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]imidazole (bicyclo-HMX, BCHMX). Patent Cz 302068, C07D 487/04, University of Pardubice, 2010.
  • [16] Klasovity, D.; Zeman, S.; Růžicka, A.; Jungová, M.; Roháč, M. cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), Its Properties and Initiation Reactivity. J. Hazard. Mater. 2009, 164: 954-961.
  • [17] Elbeih, A.; Mohamed, M. M.; Wafy, T. Sensitivity and Detonation Characteristics of Selected Nitramines Bonded by Sylgard Binder. Propellants Explos. Pyrotech. 2016, 41(6): 1044-1049.
  • [18] Elbeih, A.; Pachman, J.; Zeman, S.; Vavra, P.; Trzcinski, W.; Akstein, Z. Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders. J. Energ. Mater. 2011, 30(4): 358.
  • [19] Daniel, M. Polyurethane Binder Systems for Polymer Bonded Explosives, Defence Science and Technology Organisation. DSTO-GD-0492, Australia, 2006.
  • [20] Sućeska, M. Calculation of Detonation Parameters by EXPLO5 Computer Program. Explosion, Shock Wave and Hypervelocity Phenomena in Materials; ISBN 978-0-87849-950-2. Periodical: Mater. Sci. Forum 2004, 465: 325.
  • [21] Sućeska, M. Evaluation of Detonation Energy from EXPLO5 Computer Code Results. Propellants Explos. Pyrotech. 1999, 24(5): 280-285.
  • [22] Elbeih, A.; Husarova, A.; Zeman, S. Method of Preparation of epsilon-2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with Reduced Impact Sensitivity. Patent US 0235853 A1, 2014.
  • [23] Elbeih, A.; Husarova, A.; Zeman, S. Path to ε-HNIW with Reduced Impact Sensitivity. Cent. Eur. J. Energ. Mater. 2011, 8(3): 178.
  • [24] Krupka, M. Devices and Equipment for Testing of Energetic Materials. New Trends Res. Energ. Mater., Proc. Semin., 4th 2001, 222-227.
  • [25] Sućeska, M. Test Methods for Explosives. Springer, Heidelberg, 1995; ISBN 978-1-4612-0797-9
  • [26] Nair, U.; Sivabalan, R.; Gore, G.; Geetha, M.; Asthana, S.; Singh, H. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based Formulations (Review). Combust., Explos. Shock Waves (Engl. Transl.) 2005, 41(2): 121-132.
  • [27] Cooper, P. Introduction to Detonation Physics. In: Explosive Effects and Applications. Springer, 1998; ISBN 978-0-387-95558-2.
  • [28] Walters, Q.; Zukas, J. Fundamentals of Shaped Charge. Wiley Interscience Publication, New York, 1989; ISBN 9780471621720.
  • [29] Koch, A.; Arnold, N.; Estermann, M. A Simple Relation between the Detonation Velocity of an Explosive and its Gurney Energy. Propellants Explos. Pyrotech. 2002, 27: 365-368.
  • [30] Locking, P. Gurney Velocity Relationships. Int. Symp. Ballist. Proc. 29th, Edinburgh, Scotland, 2016, 1291-1300.
  • [31] Elshenawy, T.; Elbeih, A.; Li, Q. M. A Modified Penetration Model for Copper-Tungsten Shaped Charge Jets with Non-uniform Density Distribution. Cent. Eur. J. Energ. Mater. 2016, 13(4): 927-943.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee642c10-6146-483e-bb39-4bbc0948aaa1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.