Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As part of the work, the error level of simulations of uniform optical-fibre Bragg gratings was determined using the transition matrix method. The errors were established by comparing the transmission characteristics of the structures obtained by simulation with the corresponding characteristics arrived at experimentally. To compile these objects, elementary properties of the characteristics were specified, also affecting the applications of Bragg gratings, and compared with each other. The level of error in determining each of these features was estimated. Relationships were also found between the size of the physical properties of Bragg gratings and the level of errors obtained. Based on the findings, the correctness of the simulation of structures with the said method was verified, giving satisfying results.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
33--50
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wykr.
Twórcy
autor
- Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland
Bibliografia
- [1] Yamada, M., Sakuda, K. (1987). Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach. Applied Optics, 26(16), 3474–3478.
- [2] Saeed, J.M. (2019). A memory-efficient canonical data structure for decimal floating point arithmetic systems modeling and verification. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 471–483.
- [3] Zhang, W., Huang, W., Li, F. (2018). High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering. Guangdian Gongcheng/Opto-Electronic Engineering, 45(9).
- [4] Jacques, A., Antonello, C., Andrea, C. (2011). Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation. Bentham Science Publishers, 10–14.
- [5] Othonos, A., Kalli, K. (1999). Fibre Bragg gratings: fundamentals and applications in telecommunications and sensing.
- [6] Chia-Ju, Y., Tzu-Hsiang, Y., You-Cheng, L., Bing-Hao, S., Yung-Jr, H. (2018). Apodization techniques for side-lobes suppression in silicon photonics waveguide gratings. Lasers and Electro-Optics (CLEO).
- [7] Stępniak, P., Kisała, P. (2017). Analysis of impact long period Bragg gratings parameters on their spectral transmission characteristics. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2017, Proc. of SPIE, 10445.
- [8] Kaim, S., Mokhov, S., Divliansky, I., Zeldovich, B.Y., Glebov, L.B., Smirnov, V., Lumeau, J. (2015). Saturation of multiplexed volume Bragg grating recording. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 32(1) 22–27.
- [9] Mahakud, R., Prakash, O., Kumar, J., Nakhe, S.V., Dixit, S.K. (2012). Analysis on the effect of UV beam intensity profile on the refractive index modulation in phase mask based fibre Bragg grating writing. Optics Communications, 285(24), 5351–5358.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee61f230-3176-4f27-a1c3-093e6ee9d0bf