PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Micromechanical Properties and Stress Measurements with Diffraction Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diffraction methods are commonly used for the determination of the elastic lattice deformation and distortion from the displacement and broadening of the diffraction peak. These methods enable researchers to measure stresses and elastic properties of polycrystalline materials. The main advantages of diffraction methods are their non-destructive character and the possibility of macrostress and microstress analysis for multiphase and anisotropic materials. Measurements are performed selectively only for crystallites contributing to the measured diffraction peak, i.e. for the grains having lattice orientations for which the Bragg condition is satisfied. When several phases are present in the sample, measurements of separate diffraction peaks allow for the behaviour of each phase to be investigated independently. This method can be applied without any limitations to flat specimens. Numerical calculations of residual stresses around the rivets imply a very high stress gradientin the case of tangential stresses as well in the case of radial stresses. Attempting to verify these predictions, the residual stress measurements with an X-ray diffractometer were performed on riveted samples after the riveting process. In addition, complementary measurements of strain values with strain gauges during the riveting process were performed as well as the finite elements modelling. The aim of these measurements was to determine the stress values around the rivets and to compare results obtained with different techniques. On the other hand, the multi-scale crystallographic model of elastoplastic deformation is very convenient for the study of elastoplastic properties in microscopic and macroscopic scales. Comparison of experimental data with model predictions allows us to understand the physical phenomena that occur during a sample's deformation at the level of polycrystalline grains. Moreover, the micro and macro parameters of elastoplastic deformation can be experimentally established. It should be stated that the characterisation of the residual stress field and elastic properties is important in the study of the mechanical behaviour of polycrystalline materials, including plasticity and damage phenomena. In this work, a new analysis method of neutron diffraction results obtained during in-situ tensile load is proposed and tested. The methodology is based on the measurements of lattice strains during in-situ tensile testing for several hkl reflections and for different orientations of the sample with respect to the scattering vector. As the result, the full stress tensor for preferred texture orientations in function of the applied stress can be determined using the crystallite group method. The experimental data are presented and compared with the self-consistent model calculations performed for groups of grains selected by different hkl reflections.
Rocznik
Tom
Strony
18--39
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab., wykr., wzory
Twórcy
  • Institute of Aviation, Warsaw, Poland
  • AGH-University of Science and Technology, Kraków, Poland
Bibliografia
  • [1] Baczmański, A., Dakhlaoui, R., Braham, C., Wierzbanowski, K., Arch. Metall. and Mater., 53, 89-96 (2008)
  • [2] Dakhlaoui, R., Baczmański, A., Braham, C., Wroński, S., Wierzbanowski, K., Oliver, E.C. (2006). Acta Mater. 54, 5027 -5039.
  • [3] Dakhlaoui, R., Braham, C., Baczmański, A. (2007). Mater. Sci. Eng. A 444, 6-17.
  • [4] Kaniowski J.: Improving the Fatigue Performance of Riveted Joints in Airframes, research project report Nr EUREKA/59/2006, Institute of Aviation, Warsaw 2010.
  • [5] R. Dakhlaoui, V. Klosek, M.H. Mathon, B. Marini, Acta Mater. 58(2010) 499–509.
  • [6] P.F. Willemse, B.P. Naughton and C.A. Verbraak. Mater. Sci. Eng. 56 (1982) 25–37
  • [7] B.J. Ortner, J. Appl. Cryst. 22 (1989) 216.
  • [8] V. Hauk, “Structural and Residual Stress Analysis by Nondestructive Methods”, Elsevier, Amsterdam, Lausanne, New York, a.o., (1997)
  • [9] P. Lipinski and M. Berveiller, Int. J. Plastic. 5 (1989) 149-172.
  • [10] P. Zattarin, A. Baczmański, P. Lipiński and K. Wierzbanowski, Arch. Metall. 45 (2000) 163-184.
  • [11] Baczmanski, A. , Le Joncour, L., Panicaud, B. , Francois, M. , Braham, C., Paradowska A. M., Wroński, S., Amara S. and Chirone R., J. Appl. Cryst., 44, (2011) 966-982
  • [12] Dakhlaoui, R. Klosek, V., Mathon, M.H., Marini, B. (2010) Acta Mater. 58 499–509.
  • [13] Peters, W.H. and Ranson, W.E. (1982). Opt. Eng. 21, 427-432.
  • [14] Saanouni, K., Abdul-Latif, A., Int. J. Plasticity 12 (1996) 1111-1121.
  • [15] Chaboche, J.-L. , Boudifa, M., Saanouni, K., Int. Journal of Fracture 137 (2006) 51-75.
  • [16] Panicaud, B., Saanouni, K., Baczmanski, A., François, M., Cauvin, L., Le Joncour, L., , Computational Materials Science, 50, (2011) 1908-1916.
  • [17] Baczmański, A., Levy-Tubiana, R., Fitzpatrick, M.E., Lodini, A., (2004). Acta Mater. 52, 1565-1577.
  • [18] Fitzpatrick, M.E., Withers, P.J., Baczmański, A., Hutchings, Levy, M.T. R., Ceretti M. and Lodini, A., Acta Mater., 50, 1031-1040 (2002)
  • [19] Levy-Tubiana, R., Baczmański, A. and Lodini, A., Mater. Sci & Eng. A, 341, 74-86 (2003)
  • [20] Baczmański, A., Braham, C., Seiler, W.,(2003). Phil. Mag. 83, 3225-3246.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee6117af-f06d-425b-9169-f3b171cc286a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.