PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative studies of the electrochemical behaviour of Me|Ba0.95Ca0.05Ce0.9Y0.1O3, Me|Ce0.8Gd0.2O1.9, and Me|Zr0.84Y0.16O1.9 systems caused by long-term cathode polarisation, where Me = Ag, Au quasi-point electrodes

Identyfikatory
Warianty tytułu
PL
Analiza zmian zachodzących pod wpływem długotrwałej polaryzacji katodowej na granicy faz Me|Ba0.95Ca0.05Ce0.9Y0.1O3, Me|Ce0.8Gd0.2O1.9 i Me|Zr0.84Y0.16O1.9, gdzie Me = pseudo-punktowa elektroda wykonana z Ag, Au
Języki publikacji
EN
Abstrakty
EN
Electrochemical measurements were performed with applied potential of –0.05 to ‒0.7 V at 700°C. An increase in absolute current was observed in chronoamperometric curves during long-term negative polarisation from ‒0.3 to ‒0.7 V for an Ag quasi-point electrode in Ag|E, E = Ba0.95Ca0.05Ce0.9Y0.1O3; Ce0.8Gd0.2O1.9, or Zr0.84Y0.16O1.9 systems. Decreases in ohmic resistance Rs and polarisation resistance Rp for Ag|Ba0.95Ca0.05Ce0.9Y0.1O3, Ce0.8Gd0.2O1.9, and Zr0.84Y0.16O1.9 systems were determined by means of electrochemical impedance spectroscopy in analogous conditions. Confocal or scanning electron microscopy observation confirmed the migration of silver particles onto ceramic electrolytes under long-term negative polarisation. A silver deposit was found near the site of direct contact of the Ag electrode with the surface of the Ba0.95Ca0.05Ce0.9Y0.1O3 electrolyte. An expansion of the reaction zone in the Ag|Ba0.95Ca0.05Ce0.9Y0.1O3 system is the main reason for the increase in absolute current values. A similar electrochemical response was found in the case of zirconia or ceria-based solid electrolytes with Ag quasi-point electrodes. The effect of the chemical composition and physicochemical properties of ceramic electrolytes and applied negative potential on electrochemical response in Au|Ba0.95Ca0.05Ce0.9Y0.1O3, Au|Ce0.8Gd0.2O1.9, and Au|Zr0.84Y0.16O1.9 systems was recorded. In the case of Au|Ba0.95Ca0.05Ce0.9Y0.1O3 system, during negative polarisation with an applied potential in the range from ‒0.05 to ‒0.3 V, a small increase in absolute current values was observed on the chronoamperometric curves. In the case of Au|Ba0.95Ca0.05Ce0.9Y0.1O3 system, decreases in ohmic resistance Rs and polarisation resistance Rp were noticed vs applied potential.
PL
Celem pracy była analiza możliwych zmian zachodzących pod wpływem długotrwałej polaryzacji katodowej na granicy faz Me|Ba0,95Ca0,05Ce0,9Y0,1O3, Me|Ce0,8Gd0,2O1,9, i Me|Zr0,84Y0,16O1,9, Me = Ag, Au.
Rocznik
Strony
58--68
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Cracow
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Cracow
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Cracow
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Cracow
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Cracow
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Cracow
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Cracow
Bibliografia
  • [1] Garche J.: Encyclopedia of electrochemical power sources. Academic Press, Elsevier V.B (2009)
  • [2] Laguna-Bercero M. A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. Journal of Power Sources 203 (2012) 4÷16.
  • [3] Ong K. M., Lee W. Y., Hanna J., Ghoniem A. F.: Isolating the impact of CO concentration in syngas mixtures on SOFC performance via internal reforming and direct oxidation. International Journal of Hydrogen Energy 41 (2016) 9035÷9047.
  • [4] Gong Y., Huang K.: Study of a renewable biomass fueled SOFC: The effect of catalysts. International Journal of Hydrogen Energy 36 (2013) 16518÷16523.
  • [5] Kim H. J., Kim M., Neoh K. Ch., Han G. D., Bae K., Shin J. M., Kim G.T., Shim J. H.: Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells. Journal of Power Sources 327 (2016) 401÷407.
  • [6] Gestel T. V., Sebold D., Buchkremer H. P.: Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs. Journal of the European Ceramic Society 35 (2015) 1505÷15015.
  • [7] Tao Z., Zhu Z., Wang H., Liu W.: A stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. Journal of Power Sources 11 (2010) 3481÷3484.
  • [8] Fabbri E., Bi L., Pergolesi D., Traversa E.: Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton conducting electrolytes. Advanced Materials 24 (2012) 195÷208.
  • [9] Fabbri E., Pergolesi D., Traversa E.: Materials challenges toward protonconducting oxide fuel cells: A critical review. Chemical Society Reviews 39 (2010) 4355÷4369.
  • [10] Medvedev D., Lyagaeva J., Plaksin S., Demin A., Tsiakaras P.: Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources 273 (2015) 716÷723.
  • [11] Batocchi P., Mauvy F., Fourcade S., Parco M.: Electrical and electrochemical properties of architectured electrodes based on perovskite and A2MO4-type oxides for Protonic Ceramic Fuel Cell. Electrochimica Acta 145 (2014) 1÷10.
  • [12] Grimaud A., Mauvy F., Bassat J. M., Fourcade S., Marrony M., Grenier J. C.: Hydration and transport properties of the Pr2 − xSrxNiO4 + δ com-pounds as H+-SOFC cathodes. Journal of Materials Chemsitry 22 (2012) 16017÷16025.
  • [13] Yoo Ch. Y., Yun D. S., Park S. Y., Park J., Joo J. H., Park H., Kwak M., Yu J.: Investigation of electrochemical properties of model lanthanum strontium cobalt ferrite-based cathodes for Proton Ceramic Fuel Cells. Electrocatalysis 7 (2016) 280÷286.
  • [14] Chen X. J., Khor K. A., Chan S.H.: Electrochemical behaviour of La(Sr) MnO3 electrode under cathodic and anodic polarization. Solid State Ionics 167 (2004) 379÷387.
  • [15] Wang W., Jang S. P.: In-situ observation on the active reaction sites for oxygen reduction in solid oxide fuel cell. ECS Transaction 7 (2007) 875÷880.
  • [16] Baumann F. S., Fleig J., Konuma M., Starke U., Habermeier H. U., Maier J.: Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC cathodes by electrochemical activation. Journal of Electrochemical Society 152 (2005) A2074÷A2079.
  • [17] Baumann F. S., Fleig J., Cristiani G., Stuhlhofer B., Habermeier H.-U., Maier J.: Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes. Journal of The Electrochemical Society 154 (2007) B931÷B941.
  • [18] Egger A., Bucher E., Yang M., Sitte W.: Comparison of oxygen exchange kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3 − δ and La0.6Sr0.4CoO3 − δ. Solid State Ionics 225 (2012) 55÷60.
  • [19] Nielsen J., Jacobsen T.: Three-phase boundary at Pt|YSZ microelectrodes. Solid State Ionics 178 (2007) 1001÷1009.
  • [20] Nielsen J., Jacobsen T.: Three Phase-Boundary dynamics at metal|YSZ microelectrodes. Solid State Ionics 178 (2) 1769÷1776.
  • [21] Aaberg R. J., Tunold R., Odegard R.: On the electrochemistry of metal- YSZ single contact electrodes. Solid State Ionics 136-137 (2000) 707÷712.
  • [22] Tomczyk P., Żurek S., Mosiałek M.: Effect of time and polarization on kinetics of oxygen electrode reaction at an Au|YSZ interface. Journal of Electroceramics 23 (2009) 23÷25.
  • [23] Raźniak A., Tomczyk P.: Application of microelectrodes for investigation of the oxygen electrode reduction in selected solid oxide electrolytes. Materials Science Poland 26 (2008) 195÷206.
  • [24] Raźniak A., Dudek M., Tomczyk P.: Reduction of oxygen at the interface M|solid oxide electrolyte (M = Pt, Ag and Au, solid oxide electrolyte = YSZ and GDC). Autocatalysis or artifact? Catalysis Today 176 (2011) 41÷47.
  • [25] Mosiałek M., Bielańska E., Socha R. P., Dudek M., Mordarski G., Nowak P., Barbasz J., Rapacz-Kmita A.: Changes in the morphology and the composition of the Ag|YSZ and Ag|LSM caused by polarization. Solid State Ionics 225 (2012) 755÷759.
  • [26] Mosiałek M., Dudek M., Nowak P., Socha R.P., Mordarski G., Bielańska E.: Changes in the morphology and the composition of the Ag|GDC interface caused by polarization. Electrochimica Acta 104 (2013) 474÷480.
  • [27] Dudek M., Tomczyk P., Raźniak A., Lis B., Reben M., Gajek M., Socha R.: Selected research problems of the oxygen reduction at the Pt|8YSZ interface. Ceramic Materials 68 (2016) 14÷26 (in polish).
  • [28] Dudek M., Lis B., Rapacz-Kmita A., Gajek M., Raźniak A., Drożdż E.: Some observation on the synthesis and electrolytic properties of (Ba1 - xCax)(M0.9Y0.1)O3, M = Ce, Zr-based samples modified with calcium. Materials Science Poland 34 (2016) 101÷114.
  • [29] Zych Ł., Haberko K.: Some observations on filter pressing and sintering of yttria-stabilized zirconia nanopowder. Journal of the European Ceramic Society 27 (2007) 867÷871.
  • [30] Wang J. X., Li L. P., Campbell B. J., Lv Z., Ji Y., Xue Y., Su W.: Structure, thermal expansion, and transport properties of BaCe1 – xEuxO3 – δ ceramics. Materials Chemistry and Physics 86 (2004) 150÷155.
  • [31] Luo K., Lai X., Yi C.-W., Davis K. A., Gath K. K., Goodman D. W.: The growth of silver on an ordered alumina surface. Journal of Physical Chemistry B 109 (2005) 4064÷4068.
  • [32] Luo K., Clair T. P. St., Lai X., Goodman D. W.: Silver growth on TiO2(110) (1x1) and (1x2). Journal of Physical Chemistry B 104 (2000) 3050÷3057.
  • [33] Boyen H.-G., Ethirajan A., Kästle G., Weigl F., Ziemann P., Schmid G., Garnier M. G., Büttner M., Oelhafen P.: Alloy formation of supported gold nanoparticles at their transition from clusters to solids: Does size matter? Physical Review Letters 94 (2005) 016804.
  • [34] Kitsudo Y., Iwamoto A., Matsumoto H., Mitsuhara K., Nishimura T., Takizawa M., Akita T., Maeda Y., Kido Y.: Final state effect for Au 4f line from gold-nano-particles grown on oxides and HOPG supports. Surface Science 603 (2009) 2108÷2114.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee5dcb6c-987e-4563-803b-46b611929d47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.