PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania dynamicznych zjawisk przemieszczeniowych z wykorzystaniem radarowych zobrazowań satelitarnych – Sentinel

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Study of dynamic displacement phenomena with the use of imaging radars from the Sentinel mission
Języki publikacji
PL
Abstrakty
PL
Zjawiska dynamiczne – zarówno pochodzenia antropogenicznego, jak i naturalnego – występują zazwyczaj nieoczekiwanie i ujawniają się z dużą prędkością. Zmiany morfologii powierzchni terenu cechują się w takich przypadkach dużą gwałtownością, a rejony ich występowania nie podlegają najczęściej stałemu monitoringowi naziemnemu. Z tego względu kompleksowe opisanie skutków zaistnienia zjawisk tego typu – zwłaszcza po upływie pewnego czasu od ich wystąpienia – jest trudne, a często niemożliwe. Jednocześnie, dla badań nad charakterystykami jakościowymi i ilościowymi zjawisk dynamicznych, wartości i kierunki przemieszczeń powierzchni terenu będące ich wynikiem mają duże znaczenie. Zastosowanie satelitarnej interferometrii radarowej w badaniach zmian rzeźby powierzchni terenu wywołanych przez zjawiska takie jak trzęsienia ziemi jest już od pewnego czasu rutyną. Niemniej misja Sentinel, która prowadzona jest przez Europejską Agencję Kosmiczną, stwarza nowe możliwości prowadzenia monitoringu na obszarach, na których wystąpiły zjawiska o charakterze dynamicznym. Autorzy postanowili sprawdzić, czy wstrząs pochodzenia górniczego generuje ruchy powierzchni terenu oraz zbadać, w jakiej odległości od epicentrum mają one miejsce oraz określić rząd wielkości ruchów tego typu. Analizy interferometryczne, które oparto na metodzie satelitarnej interferometrii różnicowej DInSAR na podstawie zobrazowań radarowych pochodzących z misji Sentinel pozwoliły na uzyskanie odpowiedzi na te pytania.
EN
Dynamic phenomena, both anthropogenic and natural, usually occur unexpectedly, at high speed. During such an event, changes in ground surface morphology become rapid. What is more, permanent ground monitoring in the areas of that transformations is usually not carried out. Therefore, the comprehensive description of the effects of such phenomena – especially after some time since the event took place – is difficult and often impossible. Nevertheless, the research on qualitative and quantitative characteristics of dynamic phenomena, the values and directions of surface movements induced by their occurrence play an important role. At present, the application of satellite radar interferometry in order to assess displacements caused by earthquakes became a pattern. However, the Sentinel mission, which is being run by the European Space Agency, has opened up a new opportunities of ground deformation monitoring, particularly in the areas affected by dynamic phenomena. The authors decided to investigate whether a mining induced tremor generates surface movements and what the range as well as the dynamism of those movements are. The use of differential radar satellite interferometry DInSAR based on the Sentinel imagery radars allowed us to deepen the investigation on the ground movements caused by mining related earthquakes.
Rocznik
Tom
Strony
229--245
Opis fizyczny
Bibliogr. 41 poz., rys., wykr., tab., zdj.
Twórcy
  • AGH Akademia Górniczo-Hutnicza, Kraków
autor
  • AGH Akademia Górniczo-Hutnicza, Kraków
autor
  • AGH Akademia Górniczo-Hutnicza, Kraków
  • AGH Akademia Górniczo-Hutnicza, Kraków
Bibliografia
  • 1. Amelung i in. 1999 – Amelung, F., Galloway D.L., Bell, J.W., Zebker, H.A. i Laczniak R.J. 1999. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27, s. 483–486.
  • 2. Blewitt i in. 2006 – Blewitt, G., Kreemer, C. i Hammond, W.C. 2006. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophysics Vol. 33, Iss. 11.
  • 3. Bock i in. 1993 – Bock, Y., Agnew, D.C. i Fang, P. 1993. Detection of crustal deformation from the landers earthquake sequence using continuous geodetic measurements. Nature 361, s. 337–340.
  • 4. Butra, J. i Kudełko, J. 2011. Rockburst hazard evaluation and prevention methods in Polish copper mines. Cuprum 61, s. 5–20.
  • 5. Castañeda i in. 2009 – Castañeda, C., Gutiérrez, F., Manunta, M. i Galve, J.P. 2009. DInSAR measurements of ground deformation by sinkholes, mining subsidence and landslides, Ebro River, Spain. Earth Surface Processes and Landforms 34, s. 562–1574.
  • 6. Chen i in. 2007 – Chen, J.L., Wilson, C.R., Tapley, B.D. i Grand, S. 2007. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophysical Research Letters 34.
  • 7. Closso i in. 2003 – Closso, D., Karaki, N.A., Hansen, H., Derauw, D., Barbier, C. i Ozer, A. 2003. Space-borne radar interferometric mapping of precursory deformations of a dyke collapse, Dead Sea area, Jordan. International Journal of Remote Sensing 24, s. 843–849.
  • 8. Daniel i in. 2003 – Daniel, R., Maisons, C., Carnec, S., Le Mouelic, C. i Hosford, S. 2003. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France). Comparison with ground- based measurement. Remote Sensing of Environment 88, s. 468–478.
  • 9. De Zan, F. i Guarnieri, A.M. 2006. TOPSAR: Terrain Observation by Progressive Scans. Geoscience and Remote Sensing 44(9), s. 2352–2360.
  • 10. Elliott i in. 2015 – Elliott, J.R., Searle, M., Jolivet, R. i in. 2015. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geoscience 9, s. 174–180.
  • 11. Fattahi, H. i Amelung, F. 2016. InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan. Geophysical Research Letters.
  • 12. Ferretti i in. 2001 – Ferretti, A., Prati, C. i Rocca, F. 2001. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geoscience and Remote Sensing 39(1), s. 8–21.
  • 13. Galloway, D.L. i Hoffmann, J. 2007. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeology Journal 15, s. 133–154.
  • 14. Goldstein, R. 1995. Atmospheric limitations to repeat-track radar interferometry. Geophysical Research Letters 22(18), s. 2517–2520.
  • 15. Hejmanowski i in. 2008 – Hejmanowski, R., Malinowska, A., Stoch, T., Pluciński, P., Warchała, M. i Kosior, R. 2008. New interpretation of GPS measurementsresults. Gospodarka Surowcami Mineralnymi – Mineral Resources Management t. 24, z. 3/1, Kraków: Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, s. 197–204.
  • 16. Jones i in. 2014 – Jones, C.E., Blom, R.G. i Bayou, C. 2014. Louisiana, sinkhole: Precursory deformation measured by radar interferometry. Geology 42, s. 111–114.
  • 17. Lanari i in. 2004 – Lanari, R., Mora, O., Manunta, M., Mallorqui, J.J., Berardino, P. i Sansosti, E. 2004. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geoscience and Remote Sensing 42, s. 1377–1386.
  • 18. Lazecký i in. 2017 – Lazecký, M., Jiránková, E. i Kadlečík, P. 2017. Multitemporal monitoring of Karvina subsidence trough using Sentinel-1 and TerraSar-X interferometry. Acta Geodynamica et Geomaterialia 14, s. 53–59.
  • 19. Leeman i in. 2016 – Leeman, J., Saffer, D., Scuderi, M. i Marone, C. 2016. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nature Communications 7.
  • 20. Lindsey E. i in. 2015. Line of sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha earthquake and Mw 7.3 aftershock. Geophysical Research Letters 42, s. 6655–6661.
  • 21. Lingyun i in. 2017 – Lingyun, J., Qingliang, W., Jing, X. i Cunwei, J. 2017. The July 11, 1995 Myanmar–China earthquake: A representative event in the bookshelf faulting system of southeastern Asia observed from JERS-1 SAR images. International Journal of Applied Earth Observation and Geoinformation 55, s. 43–51.
  • 22. Loupasakis, C. i Rozos, D. 2009. Land Subsidence Induced by Water Pumping in Kalochori Village (North Greece) – Simulation of the Phenomenon by Means of the Finite Element Method. Quarterly Journal of Engineering Geology and Hydrogeology. Geological Society of London 42, s. 369– 382.
  • 23. Markiewicz i in. 2007 – Markiewicz, A., Suchan, J. i Tomanik, R. 2007. Eksploatacja górnicza a zuskokowanie spągowej partii utworów cechsztyńskich w kopalni Rudna KGHM Polska Mied SA. Górnictwo i Geoinżynieria R. 31, z. 3/1.
  • 24. Massonnet, D. i in. 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, s. 138–142.
  • 25. Matsuda, Hiroshi, Keiji S. i Naoya E. 2000. Effects of earthquake-induced settlement of clay layer on the ground subsidence. Proc. of 12th World Conference on Earthquake.
  • 26. McGarr i in. 1989 – McGarr, A., Bicknell, J., Sembera, E. i Green, R. 1989. Analysis of exceptionally large tremors in two gold mining districts of South Africa. Pure and Applied Geophysics 129, s. 295–307.
  • 27. Mirek, K. 2012. Satellite radar interferometry (InSAR) used for estimation of ground subsidence in mining areas – Upper Silesian Coal Basin Case Study. Polish Journal of Environmental Studies 21, s. 312–316.
  • 28. Moreno i in. 2009 – Moreno, M.S., Bolte, J., Klotz, J. i Melnick, D. 2009. Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters 36.
  • 29. Orlecka-Sikora i in. 2012 – Orlecka-Sikora, B., Lasocki, S., Lizurek, G. i Rudziński, L. 2012. Response of seismic activity in mines to the stress changes due to mining induced strong seismic events. International Journal of Rock Mechanic and Mine Science 53, s. 151–158.
  • 30. Pezzo i in. 2014 – Pezzo, G., Boncori, J.P.M., Atzori, S., Antonioli, A. i Salvi, S. 2014. Deformation of the western Indian Plate. Geophysical Journal International Vol. 198, Iss. 1, s. 25–30.
  • 31. Popiołek i in. 2001 – Popiołek, E., Ostrowski, J., Czaja, J. i Mazur, J. 2001. The Impact of a Strong Mining Tremor on the Subsidence of the Area Surface in the Legnica-Glogow Copper Area. 10th FIG Int. Symposium on Deformation measurements. Orange. California.
  • 32. Salski, W. 1996. The tectonics of the deposit. Piestrzyński A. red., Kraków: KGHM SA.
  • 33. Shanker, P. i Zebker, H. 2007. Persistent scatterer selection using maximum likelihood estimation. Geophysical Research Letters 34, s. 301–312.
  • 34. Sowter i in. 2016 – Sowter, A., Bin, M., Amat, C., Cigna, F., Marsh, S. i Athab, A. 2016. Mexico City land subsidence in 2014 – 2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth Observations and Geoinformation 52, s. 230–242.
  • 35. Szczerbowski, Z. i Jura, J. 2015. Induced seismic events and surface deformations monitored by GPS permanent stations. Acta Geodynamica et Geomaterialia 12, s. 237–248.
  • 36. Tatara, T. 2012. Odporność dynamiczna obiektów budowlanych w warunkach wstrząsów górniczych. Kraków: Politechnika Krakowska.
  • 37. Wodyński, A.i Lasocki, S. 2004. Assessment of Mining Tremor Influence on the Technical Wear of Building. Acta Geodynamica Et Geomaterialia 1.
  • 38. Wodyński i in. 2008 – Wodyński, A., Firek, K. i Rusek, J. 2008. Assessment of time and mining exploitation effects on the technical wear of prefabricated panel buildings. 21st World Mining Congress & Expo 2008: New challenges and visions for mining; Risk management & subsidence engineering: Sustainable development in mining industry. Gospodarka Surowcami Mineralnymi – Mineral Resources Management t. 24, z. 3/1, Kraków: Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, s. 173–181.
  • 39. Yadav i in. 2012 – Yadav, R., Gahalaut, V., Chopra, S. i Shan, B. 2012. Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence. Asian Earth Science 45, s. 167–178.
  • 40. Yague-Martinez i in. 2016 – Yague-Martinez, N., Prats-Iraola, P., Member, S., Gonzalez, F.R., Brcic, R., Shau, R. i Member, S. 2016. Interferometric Processing of Sentinel-1 TOPS Data, IEEE Transactions on Geoscience and Remote Sensing 54, s. 2220–2234.
  • 41. Zembaty i in. 2015 – Zembaty, Z., Kokot, S., Bozzoni, F., Scandella, L., Lai, C.G., Kuś, J. i Bobra, P. 2015. A system to mitigate deep mine tremor effects in the design of civil infrastructure. International Journal of Rock Mechanics & Mining Sciences 74, s. 81–90.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee566e3e-475b-4b0f-ba49-800d0689dcea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.