PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of glassy carbon and cancellous bone admixture on performance and thermal properties of acrylic bone cements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of the research is to physically modify the composition of bone cements with glassy carbon and cancellous bone to improve its performance, reduce polymerization temperature and reduce the ability of cements the effect of admixture on the phenomenon of relaxation. Design/methodology/approach: SpinePlex bone cement was modified with glassy carbon powder with 20-50 pm granulation with Maxgraft®. Maxgraft cancellous bone has been ground to 20-50 pm grains. Samples of unmodified cements (reference) and modified with glassy carbon and cancellous bone were prepared for the tests. The glassy carbon powder and ground cancellous bone were premixed with the cement copolymer powder, and then the premix prepared this way was spread in a liquid monomer. To delay the polymerization process, all components were cooled before mixing to 15°C. The addition of glassy carbon was 0.4 g and the addition of cancellous bone was 0.2 g per 20 g of cement powder, i.e. about 1.96% by mass. Polymerization temperature, relaxation and differential scanning calorimetry tests were performed on the samples made. Findings: Additives used allow: to reduce the polymerization temperature, as well as rheological properties. During the studies it was found that the additive which can meet the requirements is glassy carbon in form of powder and cancellous bone. Research limitations/implications: The results presented in the publication require further advanced research, which will be the subject of further modification attempts by the research team. Practical implications: The conducted tests showed a significant effect of glassy carbon as a modifier on the mechanical properties of cement after its solidification, but also on the course of the polymerization process. Temperature registration tests during crosslinking, tests of mechanical properties (behaviour of cement samples under load) and DSC differential scanning calorimetry analysis confirmed that the addition of glassy carbon had an effect on each of these aspects. Originality/value: The original in these studies is the possibility to improve fundamental properties of the selected bone cements by using different than commonly used additives.
Rocznik
Strony
30--40
Opis fizyczny
Bibliogr. 66 poz.
Twórcy
autor
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 19c, 42-201 Częstochowa, Poland *
autor
  • Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 19c, 42-201 Częstochowa, Poland *
Bibliografia
  • [1] E. Czerwiński, B. Frańczuk, P. Borowy, Problems of osteoporotic fractures, Medycyna po Dyplomie 13 (2004) 42-49 (in Polish).
  • [2] E. Czerwiński, P. Działak, Evaluation of osteoporosis and fracture risk, Ortopedia, Traumatologia, Rehabilitacja 2 (2002) 127-134 (in Polish).
  • [3] J.A. Kanis, O. Johnellm, A. Oden, A. Dawson, C. De Laet, B. Jonsson, Ten year probabilites of osteoporotic fractures according to BMD and diagnostic thresholds, Osteoporosis International 12 (2001) 989-995. DOI: https://doi.org/10.1007/s001980170006
  • [4] N.B. Watts, S.T. Harris, H.K. Genant, Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty, Osteoporosis International 12 (2001) 429-437. DOI: https://doi.org/10.1007/s001980170086
  • [5] A.A. Ismail, T.W. O’Neill, C. Cooper, J.D. Finn, A.K. Bhalla, J.B. Cannata, P. Delmas, J.A. Falch, B. Felsch, K. Hoszowski, O. Johnell, J.B. Diaz-Lopez, A. Lopes Vaz, F. Marchand, H. Raspe, D.M. Reid, C. Todd, K. Weber, A. Woolf, J. Reeve, A.J. Silman and on behalf of the EPOS Study Group, Mortality associated with vertebral deformity in men and women: results from European Prospective study (EPOS), Osteoporosis International 8 (1998) 291-297. DOI: https://doi.org/10.1007/s001980050067
  • [6] P.J. Meunier, Osteoporosis: diagnosis and management, Martin Duniz, 1998.
  • [7] Z. Kotwica, A. Saracen, Vertebroplasty, Zachodnio-pomorski Szpital Specjalistyczny „MEDICAM”, Gryfice, 2009, 31-59 (in Polish).
  • [8] N. Przybyłko, D. Kocur, R. Sordyl, W. Ślusarczyk, A. Antonowicz-Olewicz, W. Kukier, M. Wojtacha, K. Suszyński, S. Kwiek, Vertebroplasty in vertebral compression fractures - literature review, Academiae Medicae Silesiensis 68/5 (2014) 375-379 (in Polish).
  • [9] C. Cooper, E.J. Atkinson, W.M. O’Fallon, L.J. Melton III, Incidence of clinically diagnosed vertebral factures: a population - based study in Rochester, Minnesota, 1985-1989, Journal Bone Miner 7/2 (1992) 221-227. DOI: https://doi.org/10.1002/jbmr.5650070214
  • [10] B.L. Riggs, L.J. Melton III, The worldwide problem of osteoporosis: insights affored by epidemiology, Bone 147/5S1 (1995) S505-S511. DOI: https://doi.org/10.1016/8756-3282(95)00258-4
  • [11] A. Jasik, M. Tałałaj, M. Paczyńska, M. Walicka, E. Marcinowska-Suchowierska, Vitamin D and osteo-porosis, Postępy Nauk Medycznych 1 (2008) 8-13 (in Polish).
  • [12] L.J. Old, M. Calvert, Vertebtal compression fractures in the elderly, American Family Physician 69/1 (2004) 111-116.
  • [13] A. Babb, W.O. Carlson, Vertebral compression fractures: treatment and evaluation, South Dakota medicine : the journal of the South Dakota State Medical Association 59/8 (2006) 343-345, 347.
  • [14] D.J. Mazanec, V.K. Podichetty, A. Mompoint, A. Potnis, Vertebral compression fractures: Manage aggressively to prevent sequel, Cleveland Clinic Journal of Medicine 70/2 (2003) 147-156.
  • [15] T.J. Kaufmann, M.E. Jensen, P.A. Schweickert, W.F. Marx, D.F. Kallmes, Age of fracture and clinical outcomes of percutaneous vertebroplasty, American Journal of Neuroradiology 22/10 (2001) 1860-1863.
  • [16] N. McArthur, C. Kasperk, M. Baier, M. Tanner, B. Gritzbach, O. Schoierer, W. Rothfischer, G. Krohmer, J. Hillmeier, H.-J. Kock, P.J. Meeder, F.-X. Huber, 1150 kyphoplasties over 7 years: indications, techniques, and intraoperative complications, Orthopedics 32/2 (2009) 90. DOI: https://doi.org/10.3928/01477447-20090201-15
  • [17] S. Masala, R. Mastrangeli, M.C. Petrella, F. Massari, A. Ursone, G. Simonetti, Percutaneous vertebroplasty in 1,253 levels: Results and long-term effectiveness in a single centre, European Radiology 19 (2009) 165-171. DOI: https://doi.org/10.1007/s00330-008-1133-4
  • [18] M. Weisskopf, M. Weikopf, J.A. Ohnsorge, F.U. Niethard, Intravertebral pressure during vertebroplasty and balloon kyphoplasty: An in vitro study, Spine 33/2 (2008) 178-182. DOI: https://doi.org/10.1097/BRS.0b013e3181606139
  • [19] P.-L. Lai, L.-H. Chen, W.-J. Chen, I-M. Chu, Chemical and Physical Properties of Bone Cement for Verte- broplasty, Biomedical Journal 36/4 (2013) 162-167. DOI: https://doi.org/10.4103/2319-4170.112750
  • [20] M. Zawadzki, J. Walecki, K. Kordecki, I. Nasser, Interventional radiology: vertebroplasty and kyphoplasty, Acta Bio-Optica et Informatica Medica 15/1 (2009) (in Polish).
  • [21] I.H. Lieberman, D. Togawa, M.M. Kayanja, Vertebroplasty and kyphoplasty: Filler materials, Spine Journal 5/6S (2005) S305-S316. DOI: https://doi.org/10.1016/j.spinee.2005.02.020
  • [22] Z. He, Q. Zhai, M. Hu, C. Cao, J. Wang, H. Yang, B. Li, Bone Cements for percutaneus vertebroplasty and balloon kyphoplasty: Current status and future developments, Journal of Orthopedic Translation 3/1 (2015) 1-11. DOI: https://doi.org/10.1016/j.jot.2014.11.002
  • [23] A. Balin, Cements in bone surgery, Wydawnictwo Politechniki Śląskiej, Gliwice, 2016 (in Polish).
  • [24] I. Koh, A. López, A.B. Pinar, B. Helgason, S.J. Ferguson, The effect of water on the mechanical properties of soluble and insoluble ceramic cements, Journal of the Mechanical Behavior of Biomedical Materials 51 (2015) 50-60. DOI: https://doi.org/10.1016/j.jmbbm.2015.06.030
  • [25] J. Slane, J. Vivanco, J. Meyer, L.H. Ploeg, M. Squire, Modification of acrylic bone cement with mesoporous silica nanoparticles; Effect on mechanical, fatique and absorption properties, Journal of the Mechanical Behavior of Biomedical Materials 29 (2014) 451-461. DOI: https://doi.org/10.1016/jjmbbm.2013.10.008
  • [26] M. Wekwejt, B. Świeczko-Żurek, The bioactivity of modified bone cement: literature review, Inżynier i Fizyk Medyczny 6/4 (2017) 261-268 (in Polish).
  • [27] B. Świeczko-Żurek, Antimicrobal and ostheo-integration activity of bone cement contains nanometals, Journal of Achievements in Materials and Manufacturing Engineering 74/1 (2016) 15-21. DOI: https://doi.org/10.5604/17348412.1225753
  • [28] P. Choryłek, Vertebroplasty and kyphoplasty - advantages and disadvantages used bone cement of PMMA, Journal of Achievements in Materials and Manufacturing Engineering 92/1-2 (2019) 36-49. DOI: https://doi.org/10.5604/01.3001.0013.3186
  • [29] X. Banse, T.J. Sims, A.J. Bailey, Mechanical properties of adult vertebral cancellous bone: Correlation with collagen intermolecular cross-links, Journal of Bone and Mineral Research 17/9 (2002) 1621-1628. DOI: https://doi.org/10.1359/jbmr.2002.17.9.1621
  • [30] F.J. Hou, S.M. Lang, S.J. Hoshaw, D.A. Reimann, D.P. Fyhrie, Human vertebral body apparent and hard tissue stiffness, Journal of Biomechanics 31/11 (1998) 1009-1015. DOI: https://doi.org/10.1016/S0021- 9290(98)00110-9
  • [31] E.F. Morgan, H.H. Bayraktar, T.M. Keaveny, Trabecular bone modulus-density relationships depend on anatomic site, Journal of Biomechanics 36/7 (2003) 897-904. DOI: https://doi.org/10.1016/S0021- 9290(03)00071-X
  • [32] F. Grados, C. Depriester, G. Cayrolle, N. Hardy, H. Deramond, P. Fardellone, Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty, Rheumatology 39/12 (2000) 1410-1414. DOI: https://doi.org/10.1093/rheumatology/39.12.1410
  • [33] A.T. Trout, D.F. Kallmes, K.F. Layton, K.R. Thielen, J.G. Hentz, Vertebral endplate fractures: An indicator of the abnormal forces generated in the spine after vertebroplasty, Journal of Bone and Mineral Research 21/11 (2006) 1797-1802. DOI: https://doi.org/10.1359/jbmr.060723
  • [34] H.-J. Jiang, J. Xu, Z.-Y. Qiu, X.-L. Ma, Z.-Q. Zhang, X.-X. Tan, Y. Cui, F.-Z. Cui, Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen, Materials 8/5 (2015) 2616-2634. DOI: https://doi.org/10.3390/ma8052616
  • [35] M. Bai, H. Yin, J. Zhao, Y. Li, Y Yang, Y Wu, Application of PMMA bone cement composited with bone-mineralized collagen in percutaneous kypho-plasty, Regenerative Biomaterials 4/4 (2017) 251-255. DOI: https://doi.org/10.1093/rb/rbx019
  • [36] C. Wang, R. Pillar, Fracture toughness of acrylic bone cements, Journal of Material Science 24 (1989) 3725-3728. DOI: https://doi.org/10.1007/BF02385763
  • [37] D.H. Choe, E.M. Marom, K. Ahrar, M.T. Truong, J.E. Madewell, Pulmonary embolism of polymethyl methacrylate during percutaneous vertebroplasty and kyphoplasty, American Journal of Roentgenology 183/4 (2004) 1097-1102. DOI: https://doi.org/10.2214/ajr.183.4.1831097
  • [38] K.Y. Yoo, S.W. Jeong, W. Yoon, J.U. Lee, Acute respiratory distress syndrome associated with pulmonary cement embolism following percutaneous vertebroplasty with polymethylmethacrylate, Spine 29/14 (2004) E294-E297. DOI: https://doi.org/10.1097/01.BRS.0000131211.87594.B0
  • [39] K. Francois, Y. Taeymans, B. Poffyn, G. Van Nooten, Successful management of a large pulmonary cement embolus after percutaneous vertebroplasty: a case report, Spine 28/20 (2003) E424-E425. DOI: https://doi.org/10.1097/01.BRS.0000092345.00563.E0
  • [40] J.S. Jang, S.H. Lee, S.K. Jung, Pulmonary embolism of polymethylmethacrylate after percutaneous vertebroplasty: a report of three cases, Spine 27/19 (2002) E416-E418.
  • [41] B. Padovani, O. Kasriel, P Brunner, P. Peretti-Viton, Pulmonary embolism caused by acrylic cement: a rare complication of percutaneous vertebroplasty, American Journal of Neuroradiology 20/3 (1999) 375-377.
  • [42] M. Freitag, A. Gottschalk, M. Schuster, W. Wenk, L. Wiesner, T.G. Standl, Pulmonary embolism caused by polymethylmethacrylate during percutaneous vertebra- plasty in orthopaedic surgery, Acta Anaesthesiologica Scandinavica 50/2 (2006) 248-251. DOI: https://doi.org/10.1111/j.1399-6576.2005.00821.x
  • [43] J.N. MacTaggart, I.I. Pipinos, J.M. Johanning, T.G. Lynch, Acrylic cement pulmonary embolus masquerading as an embolized central venous catheter fragment, Journal of Vascular Surgery 43/1 (2006) 180¬183. DOI: https://doi.org/10.1016/jjvs.2005.09.002
  • [44] G. Baroud, M. Crookshank, M. Bohner, High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage, Spine 31/22 (2006) 2562-2568. DOI: https://doi.org/10.1097/01.brs.0000240695.58651.62
  • [45] P. Shridhar, Y.F. Chen, R. Khalil, A. Plakseychuk, S.K. Cho, B. Tillman, P.N. Kumt, Y.J. Chun, A review of PMMA bone cement and intra-cardiac embolism, Materials 9/10 (2016) 821. DOI: https://doi.org/10.3390/ma9100821
  • [46] K.D. Harrington, Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate. A case report, Journal of Bone and Joint Surgery 83/7 (2001) 1070-1073.
  • [47] C. Cyteval, M.P. Sarrabere, J.O. Roux, E. Thomas, C. Jorgensen, F. Blotman, J. Sany, P. Taourel, Acute osteoporotic vertebral collapse: open study on percutaneous injection of acrylic surgical cement in 20 patients, American Journal of Roentgenology 173 (1999) 1685-1690. DOI: https://doi.Org/102214/ajr173.6.10584820
  • [48] M. Wenger, T.M. Markwalder, Surgically controlled, transpedicular methyl methacrylate vertebroplasty with fluoroscopic guidance, Acta Neurochirurgica (Wien) 141 (1999) 625-631. DOI: https://doi.org/10.1007/s007010050352
  • [49] K.A. Mann, D.L. Bartel, T.M. Wright, A.H. Burstein, Coulomb frictional interfaces in modeling cemented total hip replecement: a more realistic model, Journal of Biomechanics 28/9 (1995) 1067-1078. DOI: https://doi.org/10.1016/0021-9290(94)00158-Z
  • [50] A. Balin, J. Myalski, G. Pucka, J. Toborek, Influence of admixtures of ceramic material on the physicochemical properties of surgical cement, Polimery 51/11-12 (2006) 852-858 (in Polish). DOI: https://dx.doi.org/10.14314/polimery.2006.852
  • [51] A. Balin, Mechanisms of cracking and durability of new biomaterials used as fillers in bone hip surgery, Report on the research project KBN Nr 7 T08E 029 16, 1999-2000 (in Polish).
  • [52] A. Balin, J. Toborek, J. Myalski, Physical properties of surgical cement modified with ceramic, Acta Bioengineering and Biomechanics 1/1 (1999) 51-54 (in Polish).
  • [53] J. Okrajni, A. Balin, Estimation of the ceramic admixture influence on the polymerization temperature of surgical cement, Journal of Medical Informatics and Technologies 6 (2003) 127-135.
  • [54] K.E. Oczoś, Shaping ceramic technical materials, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 1996 (in Polish).
  • [55] A. Balin, M. Sozańska, J. Toborek, Z. Gajda, Application of scanning microscopy and X-ray microanalysis for description of the admixture surgical cements fracture, Journal of Medical Informatics and Technologies 2/2 (2001) 75-83.
  • [56] A. Sudo, M. Hasegawa, A. Fukuda, A. Uchida, Treatment of Infected Hip Arthroplasty With Antibiotic-Impregnated Calcium Hydroxyapatite, The Journal of Arthroplasty 23/1 (2008) 145-150. DOI: https://doi.org/10.1016/j.arth.2006.09.009
  • [57] J. Martmez-Moreno, C. Mura, V. Merino, A. Nacher, M. Climente, M. Merino-Sanjuan, Study of the Influence of Bone Cement Type and Mixing Method on the Bioactivity and the Elution Kinetics of Cipro- floxacin, Journal of Arthroplasty 30/7 (2015) 1243-1249. DOI: https://doi.org/10.1016/j.arth.2015.02.016
  • [58] G. Massazza, A. Bistolfi, E. Verne, M. Miola, L. Ravera, F. Rosso, Antibiotics and cements for the prevention of biofilm-associated infections, in: L. Barnes, I.R. Cooper (eds.), Biomaterials and Medical Device - Associated Infections, Woodhead Publishing Limited, 2015, 185-197. DOI: https://doi.org/10.1533/9780857097224.2.185
  • [59] A.C. Matos, L.M. Gonęalves, P. Rijo, M.A. Vaz, A.J. Almeida, A.F. Bettencourt, A novel modified acrylic bone cement matrix. A step forward on antibiotic delivery against multiresistant bacteria responsible for prosthetic joint infections, Materials Science and Engineering: C 38 (2014) 218-226. DOI: https://doi.org/10.1016/j.msec.2014.02.002
  • [60] J. Slane, J. Vivanco, W. Rose, H.L. Ploeg, M. Squire Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles, Materials Science and Engineering: C 48 (2015) 188-196. DOI: https://doi.org/10.1016Zj.msec.2014.11.068
  • [61] S.C. Shen, W.K. Ng, Y.C. Dong, J. Ng, R.B.H. Tan, Nanostructured material formulated acrylic bone cements with enhanced drug release, Materials Science and Engineering: C 58 (2016) 233-241. DOI: https://doi.org/10.1016/j.msec.2015.08.011
  • [62] Z.Y. Qiu, I.S Noh, S.M. Zhang, Silicate-doped hydroxyapatite and its promotive effect on bone mineralization, Frontiers of Materials Science 7 (2013) 40-50. DOI: https://doi.orgZ10.1007/s11706-013-0193-9
  • [63] T. Li, X. Weng, Y. Bian, L. Zhou, F. Cui, Z. Qiu, Influence of Nano-HA coated bone collagen to acrylic (Polymethylmethacrylate) bone cement on mechanical properties and bioactivity, PLoS One 10/6 (2015) e0129018. DOI: https://doi.org/10.1371/journal.pone.0129018
  • [64] J. Wu, S. Xu, Z. Qiu, P. Liu, H. Liu, X. Yu, F.-Z. Cui, Z.R. Chunhua, Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation, Journal of Biomaterials Applications 30/6 (2016) 722-731. DOI: https://doi.org/10.1177%2F0885328215582112
  • [65] A. Balin, The effect of a glassy carbon additive to surgical cement on its durability and adaptation in the organism, Engineering of Biomaterials 18/131 (2015) 12-31 (in Polish).
  • [66] J. Haponiuk, Viscoelastic properties of polymers, Politechnika Gdanska, Gdańsk, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee52d763-22d7-490d-8ee2-3443f41ba5aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.