PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecotoxicological effects and pollutant adsorption properties of arbuscular mycorrhizal fungi–environmental nanocomposites

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arbuscular mycorrhizal fungi (AMF) play a crucial role in soil ecosystems by significantly impacting their stability and functioning. This study aims to analyze the practical application of AMF by combining them with environmental nanomaterials (ENs) to create AMF–EN. This study investigated the ecotoxicological effects and pollutant adsorption properties of this material. From the biotoxicity experiments on the composite, it was determined that the growth rate of plant cells under the influence of the nanocomposite was 7.49%, notably surpassing that of titanium dioxide (TD) nanomaterials, which was estimated to be 5.58%. Additionally, the adsorption properties of AMF–ENs were examined. The results showed that the concentration of soil pollutants under the influence of AMF–TD nanocomplexes in the tested soils was 58.6 mg/g, which was significantly lower than that of TD nanomaterials. The outcomes demonstrate that the physiological toxicity and adsorption properties of environmental nanocomplexes with AMF have been optimized. Consequently, the combination of AMF and environmental nanocomplexes in the preparation can efficiently enhance the ecological effect of ENs.
Wydawca
Rocznik
Strony
86--99
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University Wulumuqi, China
Bibliografia
  • [1] Jia, B., Diao, F., Ding, S., Shi, Z., Xu, J., Hao, L., et al., Differential effects of arbuscular mycorrhizal fungi on three salt-tolerant grasses under cadmium and salt stress, Land. Degrad. Dev., 2023, 34(2): 506–520, 10.1002/ldr.4475
  • [2] Sousa, N.M.F., Roy, J., Hempel, S., Rillig, M.C., Maia, L.C., Precipitation and temperature shape the biogeography of arbuscular mycorrhizal fungi across the Brazilian Caatinga, J. Biogeogr., 2022, 49(6): 1137–1150, 10.1111/jbi.14376
  • [3] Hajiboland, R., Joudmand, A., Aliasgharzad, N., Tolra, R., Poschenrieder, C., Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley, Crop. Pasture Sci., 2019, 70(3): 218–233, 10.1071/cp18385
  • [4] Mansfield, T.M., Albornoz, F.E., Ryan, M.H., Bending, G.D., Standish, R.J., Niche differentiation of mucoromycotinian and glomeromycotinian arbuscular mycorrhizal fungi along a 2-million-year soil chronosequence, Mycorrhiza, 2023, 33(3): 139–152, 10.1007/s00572-023-01111-x
  • [5] Islam, M.N., Germida, J.J., Walley, F.L., Responses of arbuscular mycorrhizal fungal communities to soil core transplantation across Saskatchewan Prairie climatic regions, Can. J. Soil. Sci., 2020, 100(1): 81–96, 10.1139/cjss-2019-0053
  • [6] Schoenherr, A.P., Rizzo, E., Jackson, N., Manosalva, P., Gomez, S.K., Mycorrhiza-induced resistance in potato involves priming of defense responses against cabbage looper (noctuidae: lepidoptera,. Env. Entomol., 2019, 48(2): 370–381, 10.1093/ee/nvy195
  • [7] Wang, X., Yin, R., Zeng, L., Zhu, M., A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments, Env. Pollut., 2019, 253(5): 100–110, 10.1016/j.envpol.2019.06.067
  • [8] Tian, Y., Chowdhury, I., Adsorption of selected pharmaceutical and personal care products with molybdenum disulfide and tungsten disulfide nanomaterials, Env. Eng. Sci., 2019, 36(3): 305–315, 10.1089/ees.2018.0313
  • [9] Yin, F., Yue, W., Li, Y., Gao, S., Zhang, C., Kan, H., et al., Carbon-based nanomaterials for the detection of volatile organic compounds: a review, Carbon, 2021, 180(4): 274–297, 10.1016/j.carbon.2021.04.080
  • [10] Cardona, D.S., Debs, K.B., Lemos, S.G., Vitale, G., Nassar, N.N., Carrilho, E.N.V.M., et al., A comparison study of cleanup techniques for oil spill treatment using magnetic nanomaterials, J. Env. Manage. 2019, 242(6): 362–371, 10.1016/j.jenvman.2019.04.106
  • [11] Cheng, J.K., Cao, M.Y., Yang, H.R., Yue, M.F., Xin, G.R., Chen, B.M., Interactive effects of allelopathy and arbuscular mycorrhizal fungi on the competition between the invasive species bidens alba and its native congener Bidens biternata, Weed Res., 2022, 62(4): 268–276, 10.1111/wre.12534
  • [12] Diao, F., Jia, B., Wang, X., Luo, J., Hou, Y., Li, F.Y., et al., Proteomic analysis revealed modulations of carbon and nitrogen by arbuscular mycorrhizal fungi associated with the halophyte Suaeda salsa in a moderately saline environment, Land. Degrad. Dev., 2022, 33(11): 1933–1943, 10.1002/ldr.4274
  • [13] Locke, H., Crawford, K.M., Arbuscular mycorrhizal fungi mediate how plant herbivory history influences herbivore performance, Ecol. Entomol., 2022, 47(4): 590–600, 10.1111/een.13143
  • [14] Persi, J., Maherali, H., Influence of arbuscular mycorrhizal fungi on root allocation and morphology in two medicago species, Int. J. Plant. Sci., 2022, 183(1): 1–9, 10.1086/716783
  • [15] Devi, M.K., Yaashikaa, P.R., Kumar, P.S., Manikandan, S., Oviyapriya, M., Varshika, V., et al., Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater, New J. Chem., 2023, 47(16): 7655–7667, 10.1039/d3nj00282a
  • [16] Wang, Q., Du, F., Hou, Y., Zhang, Y., Cui, M., Zhang, Y., Preparation of a CeO2-ZrO2 based nano-composite with enhanced thermal stability by a novel chelating precipitation method, Ceram. Int., 2021, 47(23): 33057–33063, 10.1016/j.ceramint.2021.08.206
  • [17] Wang, Z., Zeng, W., Ng, K.Y.S., Facile synthesis of cos nanoparticles anchored on the surface of functionalized multiwalled carbon nanotubes as cathode materials for advanced li-s batteries, Ind. Eng. Chem. Res., 2022, 61(26): 9322–9330, 10.1021/acs.iecr.2c01222
  • [18] Chen, S., Wang, G., Sui, W., Parvez, A.M., Si, C., Synthesis of lignin-functionalized phenolic nanosphere supported ag nanoparticles with excellent dispersion stability and catalytic performance, Green. Chem., 2020, 22(9): 2879–2888, 10.1039/c9gc04311j
  • [19] Han, G., Qian, Q., Rodriguez, K.M., Smith, Z.P., Hydrothermal synthesis of sub-20 nm amine-functionalized mil-101(cr) nanoparticles with high surface area and enhanced CO2 uptake, Ind. Eng. Chem. Res., 2020, 59(16): 7888–7900, 10.1021/acs.iecr.0c00535
  • [20] Amari, H., Guerrouache, M., Mahouche-Chergui, S., Abderrahim, R., Carbonnier, B., In situ synthesis of silver nanoparticles on densely amine-functionalized polystyrene: highly active nanocomposite catalyst for the reduction of methylene blue, Polym. Adv. Technol., 2019, 30(2): 320–328, 10.1002/pat.4468
  • [21] Zheng, Y., Khan, N.A., Ni, X., Zhang, K.A.I., Shen, Y., Huang, N., et al., Emerging covalent triazine framework-based nanomaterials for electrochemical energy storage and conversion, Chem. Commun., 2023, 59(42): 6314–6334, 10.1039/d3cc00712j
  • [22] Li, D.W., Xie, M., Bruschweiler, R., Quantitative cooperative binding model for intrinsically disordered proteins interacting with nanomaterials, J. Am. Chem. Soc., 2020, 142(24): 10730–10738, 10.1021/jacs.0c01885
  • [23] Liang, B.B., Wang, W.J., Fan, X.X., Kurakov, A.V., Liu, Y.F., Song, F.Q., et al., Arbuscular mycorrhizal fungi can ameliorate salt stress in Elaeagnus angustifolia by improving leaf photosynthetic function and ultrastructure, Plant. Biol., 2021, 23(2): 232–241, 10.1111/plb.13164
  • [24] Asmelash, F., Bekele, T., Belay, Z., Kebede, F., Soil physicochemical property and arbuscular mycorrhizal fungi resilience to degradation and deforestation of a dry evergreen afromontane forest in central ethiopia, Land. Degrad. Dev., 2021, 32(11): 3338–3350, 10.1002/ldr.4011
  • [25] Zou, Y.N., Wu, Q.S., Kuca, K., Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress, Plant. Biol., 2021, 23(6): 50–57, 10.1111/plb.13161
  • [26] Bhantana, P., Rana, M.S., Sun, X., Moussa, M.G., Saleem, M.H., Syaifudin, M., et al., Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation, Symbiosis, 2021, 84(1): 19–37, 10.1007/s13199-021-00756-6
  • [27] Guo, Y., Zhu, W., Tao, M., Wu, X., Chen, J., Peng, X., et al., Delicate and independent manipulation of dynamic fluorescence behavior of polymer nanoparticles based on a core-shell strategy, ACS Appl. Mater. Interfaces, 2022, 14(34): 39384–39395, 10.1021/acsami.2c11279
  • [28] Liu, L., Sha, R., Yang, L., Zhao, X., Zhu, Y., Gao, J., et al., Impact of morphology on iron oxide nanoparticles-induced inflammasome activation in macrophages, ACS Appl. Mater. Interfaces, 2018, 10(48): 41197–41206, 10.1021/acsami.8b17474
  • [29] Sajid ,M., Nazal, M.K., Ihsanullah, I., Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review, Anal. Chim. Acta, 2021, 1141(6): 246–262, 10.1016/j.aca.2020.07.064
  • [30] Dewir, Y.H., Al-Qarawi, A.A., Alshahrani, T., Bansal, Y., Mujib, A., Murthy, H.N., Influence of arbuscular mycorrhizal fungi on the growth and development of micropropagated rubus fruticosus ‘p45’ plants during acclimatization, HortScience, 2023, 58(8): 871–876, 10.21273/HORTSCI17211-23
  • [31] Joel, J.M., Johnson, R., Puthur, J.T., Co-application of arbuscular mycorrhizal fungi and engineered nanomaterials: A promising strategy for crop resilience against abiotic stresses, S Afr. J. Bot., 2023, 162(5): 314–323, 10.1016/j.sajb.2023.09.022
  • [32] Cardini, A., Pellegrino, E., Stéphane, D., Calonne-Salmon, M., Mazzolai, B., Ercoli, L., Direct transfer of zinc between plants is channelled by common mycorrhizal network of arbuscular mycorrhizal fungi and evidenced by changes in expression of zinc transporter genes in fungus and plant, Env. Microbiol., 2021, 23(10): 5883–5900, 10.1111/1462-2920.15542
  • [33] Yan, W., Lin, X., Yao, Q., Zhao, C., Xu, H., Arbuscular mycorrhizal fungi improve uptake and control efficacy of carbosulfan on Spodoptera frugiperda in maize plants, Pest. Manag. Sci., 2021, 77(6): 2812–2819, 10.1002/ps.6314
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee5248c8-b528-41ff-bd1d-275cbbcc719a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.