PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Accumulation of Heavy Metals in Organs of Aqueous Plants and its Association With Bottom Sediments in Bug River (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of studies upon metals (Pb, Zn, Cr, Ni, Cu, Co) in bottom sediments and in various parts of the aquatic plants taken from the Bug river (Poland). The metal contents in the examined environmental elements were determined by AAS technique. The aim of this study was to evaluate the content of metals in bottom sediments and macrophytes (root, stem, leaf) occurring in the Bug river. It was hypothesized that the heavy metal content in plant tissues reflects the amount of metals in sediments. It has been shown that the average metal distribution in the examined plants present in the Bug river and bottom sediments was as follows: Pb, Zn, Co, and Cu sediments>root>leaf>stem, while in the case of Ni and Cr, the contents were greater in roots than in sediment (root>sediment>leaf>stem), although the differences in contents were not large. The study showed that most metals are present in roots and only a small part of them is transported to the stem and leaves. The size of the metal movement within plants may depend on their contents. It was found that for Ni, Cr and Cu in 2014, the bioaccumulation factor was above one, which confirms the high efficiency of metals uptake from the environment as evidenced by statistical analysis. Bioaccumulation factor (BF) was smaller than one for Pb, Co and Zn, confirming the high ability to retain metals in the root. Aquatic plants are an effective barrier for the surface water by accumulating heavy metals in their biomass. Macrophytes are proposed to monitor the river pollution.
Słowa kluczowe
Rocznik
Strony
295--303
Opis fizyczny
Bibliogr. 35 poz., tab., rys.
Twórcy
  • Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland
  • Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland
  • Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland
Bibliografia
  • 1. Barrat-Segretain M.H., 2001. Biomass allocation in macrophytespecies in relation to the disturbance level of their habitat. Freshwat. Biol., 46, 935–945.
  • 2. Bojakowska I. Sokołowska G., 1998. Geochemiczne klasy czystości osadów wodnych. Przegl. Geolog. 46, 1, 49–54.
  • 3. Bojakowska I., 2001. Kryteria oceny zanieczyszczenia osadów wodnych. Przegl. Geolog., 49, 3, 213–218.
  • 4. Bonanno G., 2013. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol. Environ. Saf. 97, 124–130.
  • 5. Bonanno G., Lo Giudice R., 2010. Heavymetal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 10, 639–645.
  • 6. Dmochowski D., 1995, Analiza możliwości zastosowania specjacji metali ciężkich do oceny zanieczyszczenia wód powierzchniowych na terenach zurbanizowanych, praca doktorska, Politechnika Warszawska, Wydział Inżynierii Środowiska, Warszawa.
  • 7. Dauvalter V., Rognerud S., 2001, Heavy metal pollution in sediments of the Pasvik River drainage, „Chemosphere”, 42, 9–18.
  • 8. Dombrowski A, Glowacki Z, Jakubowski W., Kovalchuka I., Michalczyk Z., Nikiforova M., Szwajgier W., Wojciechowski K., 2002, Korytarz ekologiczny doliny Bugu. Stan-Zagrożenia- Ochrona, Praca zbiorowa, 350.
  • 9. Eid, E.M.,Shaltout, K.H.,El-Sheikh, M.,Asaeda, T., 2012. Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspectives for phytoremediation. Flora 207, 783–794.
  • 10. Fediuc E., Erdei L., 2002, Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia, J. Plant Physiol., 159, 265–271.
  • 11. Fritioff A., Greger M., 2006, Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans, Chemosph., 63, 220–227
  • 12. Gworek B., Kwasowski W., 2001, Wpływ motoryzacji na środowisko, w: Obieg pierwiastków w przyrodzie, red. B. Gworek, A. Mocka, monografia, t. 1, IOŚ, Warszawa, 39–48.
  • 13. Helios-Rybicka E., 1991, Akumulacja i mobilizacja metali ciężkich w osadach środowiska wodnego: osady datowane jako wskaźnik chronologiczny, Mat. Konf. „Geologiczne aspekty ochrony środowiska”, Kraków, 18–23.
  • 14. Helios-Rybicka E., Wardas M., Adamiec E., Strzebińska M., 2001. Ocena zanieczyszczenia rzeki Odry I Wisły – przeszłość i teraźniejszość, Geol.,27, 659–671.
  • 15. Idaszkin, Y.L., Bouza, P.J., Marinho, C.H., Gil, M.N., 2014. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh. Mar. Pollut. Bull. 89, 444–450.
  • 16. . Jiao, M., Li, X., Liu, J.Y., Tian, Y.Q., Huang, Y., Gao, C.M., Chen, X.J., 2014. Study of absorption of heavy metals (Pb, Cu) in Phragmites australis in Lingang New City. Appl. Mech. Mater. 692, 3–7.
  • 17. Kabata-Pendias A., Pendias H., 1999, Biogeochemia pierwiastków śladowych, PWN, Warszawa.
  • 18. Kabata-Pendias, A., Pendias, H., 2001. Trace Elements in Soils and Plants, Third edition. CRC Press, Boca Raton, London, New York, Washington, D.C.
  • 19. Karczewska A., 2002, Metale ciężkie w glebach zanieczyszczonych emisjami hut miedzi – formy i rozpuszczalność, Instytut Gleboznawstwa i Ochrony Środowiska Rolniczego, Wrocław.
  • 20. Klink, A., Macioł, A., Wisłocka, M., Krawczyk, J.,
  • 2013. Metal accumulation and distribution in the organs of Typha latifolia L. (cattail) and their potential use in bioindication. Limnol.-Ecol. Manage. Inland Waters 43, 164–168.
  • 21. Linnik P. M., Zubenko I. B., 2000, Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds lakes and reservoirs, Res. Manage., 5, 11–21.
  • 22. Lis J., Pasieczna A., 1995, Atlas geochemiczny Polski w skali 1: 2,500,000, Państw. Inst. Geol., Warszawa.
  • 23. Lyubenova, L., Pongrac, P., Vogel-Mikuš, K., Mezek, G.K., Vavpeticˇ, P., Grlj, N., Regvar, M., Pelicon, P. Schroder, P., 2013. The fate of arsenic, cadmium and lead in Typha latifolia: A case study on the applicability of micro-PIXE in plant ionomics. J. Hazard. Mater. 248, 371–378.
  • 24. Markert B., 1992, Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems, Veget., 103, 1–30.
  • 25. Mazej Z., Germ M., 2009, Trace element accumulation and distribution in four aquatic macrophytes, „Chemosph.”, 74, 642–647. Mazur T., Sądej W., Mazur Z., Wojtas A., 2002, Produkcyjno-ekologiczne skutki stosowania gnojowicy. Acta Agroph., 70, 265–269.
  • 27. Mielke H.W., Laidlaw M.A., Gonzales C., 2010.
  • Lead (Pb) legacy from vehicle traffic in eight California urbanized areas: continuing influence of lead dust on children’s health. Sci. Total Environ.408, 3965–3975.
  • 28. Otte M.L., Jacob D.L., 2005. Chemical finger- printing of plants from contrasting wetlands–salt marsh, geothermal and mining impacted. Phyton 45, 303–316.
  • 29. Skorbiłowicz E., Bojakowska J., 2006, Influence of sewage disposal on zinc contents in waters and bottom sediments of selected rivers in Podlasie region, „Pol. J. Environ. Stud.”, 15, 5D, 695–699.
  • 30. Sousa A.I., Caçador I., Lillebø A.I., Pardal M.A.,2008, Heavy metal accumulation in Halimione portulacoides: Intra- and extra-cellular metal binding sites, “Chemosph.”, 70, 850–857.
  • 31. Sukumaran D., 2013. Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. Appl. Ecol. Environ. Sci. 1, 92–97.
  • 32. Turekian K.K., Wedephol K.H., 1961, Distributio of the Elements in Some Mayor Units of the Earth s Crust, „Bull. Geol. Soc. Am.”, 72, 175–184
  • 33. Vymazal J., Kropfelova L., Švehla J., Chrastny´ V., Štichova J., 2009. Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecol. Eng. 35, 303–309.
  • 34. Wenzel W.W., Jockwer F., 1999. Accumulation of heavy metals in plants grow on mineralized soils in the Austrian Alps. Environ. Pollut. 104, 145–155.
  • 35. Yang Y., He Z., Lin Y., Philips E.J., Stofella P.J., Powell C.A., 2008, Temporal and spatial variations of Copper, Cadmium, Lead, and zinc in Ten mile Creek in south Florida, USA. Wat. Environ. Res., 81, 1, 40–50.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee50b2a6-27fd-4515-974f-c37f1a569843
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.