PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption equilibrium of carbon dioxide on zeolite 1X at high pressures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon dioxide (CO2) is a compound responsible for the greenhouse effect. One of the methods of CO2 capture from the gas stream is adsorption process. In this paper, the adsorption equilibrium isotherms of CO2 on zeolite 13X were measured at different temperatures (293.15 K, 303.15 K, 313.15 K, 323.15 K, 333.15 K, 348.15 K, 373.15 K, 393.15 K) and under pressures up to 2 MPa. These data were obtained using an Intelligent Gravimetric Analyzer (IGA-002, Hiden Isochema, UK). Selected multitemperature adsorption isotherm equations, namely Toth, Langmuir–Freundlich, and, Langmuir were correlated with experimental data.
Rocznik
Strony
309–--321
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Cavenati S., Grande C.A., Rodrigues A.E., 2004. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on Zeolite 13X at high pressures. J. Chem. Eng. Data, 49, 1095–1101. DOI: 10.1021/je0498917.
  • 2. Cavenati S., Grande C.A., Rodriques A.E., 2006. Removal of carbon dioxide from natural gas by vacuum swing adsorption. Energy Fuels, 20, 2648–2659. DOI: 10.1021/ef060119e.
  • 3. Costa E., Calleja G., Jimenez A., Pau J., 1991. Adsorption equilibrium of ethylene, propane, propylene, carbon dioxide, and their mixtures on 13X zeolite. J. Chem. Eng. Data, 36, 218–224. DOI: 10.1021/je00002a020.
  • 4. Creamer A. E., Gao B., 2015. Carbon dioxide capture: An effective way to combat global warming. Springer, Cham. DOI: 10.1007/978-3-319-17010-7.
  • 5. Delgado J.A., Agueda V.I., Uguina M.A., Sotelo J.L., Brea P., Grande C.A., 2014. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and Zeolite 13X: Evaluation of performance in pressure swing adsorption hydrogen purification by simulation. Ind. Eng. Chem. Res., 53, 15414–15426. DOI: 10.1021/ie403744u.
  • 6. Do D.D., 1998. Adsorption analysis: Equilibria and kinetics, Imperial College Press.
  • 7. Hefti M., Marx D., Joss L., Mazzotti M., 2015. Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM and 13X. Microporous Mesoporous Mater., 215, 215–228. DOI: 10.1016/j.micromeso. 2015.05.044.
  • 8. Hyun S.H., Danner R.P., 1982. Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves. J. Chem. Eng. Data, 27, 196–200. DOI: 10.1021/je00028a029.
  • 9. Keller J., Staudt R., 2005. Gas adsorption equilibria: Experimental methods and adsorption isotherms. Springer.
  • 10. Kidnay A.J., Parrish W.R., 2006. Fundamentals of natural gas processing. CRC Press.
  • 11. Kotowicz J., Janusz K., 2007. Manners of the reduction of the emission CO2 from energetic processes. Rynek Energii, 1, 10–18.
  • 12. Kyoto Protocol to the United Nations Framework Convention on Climate Change, 1998. Available at: https://unfccc.int/sites/default/files/kpeng.pdf.
  • 13. Langmuir K., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • 14. Lee J.-S., Kim J.-H., Kim J.-T., Suh J.-K., Lee J.-M., Lee C.-H., 2002. Adsorption equilibria of CO2 on Zeolite 13X and Zeolite X/activated carbon composite. J. Chem. Eng. Data, 47, 1237–1242. DOI: 10.1021/je020050e.
  • 15. Li G., Xiao P., Webley P., Zhang J., Singh R., Marshall M., 2008. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 14, 415–422. DOI: 10.1007/s10450-007-9100-y.
  • 16. Lin C.-C., LiuW.-T., Tan C.-S., 2003. Removal of carbon dioxide by adsorption in a rotating packed bed. Ind. Eng. Chem. Res., 42, 2381–2386. DOI: 10.1021/ie020669+.
  • 17. Ling J., Ntiamoah A., Xiao P., Xu D.,Webley P. A., Zhai Y., 2014. Overview of CO2 capture from flue gas streams by vacuum pressure swing adsorption technology. Austin Chem. Eng., 1(2), 1009.
  • 18. Małecki Z., Rajewski J., 2008. Czas zeolitów. ´ Swiat szkła, 116, 55–57.
  • 19. Maring B.J., Webley P.A., 2013. A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenh Gas Con., 15, 16–31. DOI: 10.1016/j.ijggc.2013.01.009.
  • 20. Merel J., Clausse M., Meunier F., 2008. Experimental investigation on CO2 post-combustion capture thermal swing adsorption using 13X and 5A Zeolites. Ind. Eng. Chem. Res., 47, 209–215. DOI: 10.1021/ie071012x.
  • 21. Miłek M., 2009. Problemy z pakietem klimatyczno-energetycznym. Wydawnictwo PWSZ.
  • 22. Nastaj J., 2013. Modelowanie wybranych procesów adsorpcyjnych i biosorpcyjnych w ochronie środowiska. BEL Studio Sp. z o.o., Szczecin.
  • 23. Nastaj J., Aleksandrzak T., 2013. Comparison of static and dynamic methods of adsorption isotherms determination. 20thInternational Congress of Chemical and Process Engineering CHISA 2012. Prague, Czech Republic, 25–29.08.2012.
  • 24. Nowak W., Majchrzak-Kuce˛ba I.,Wawrzyńczak D., Bieniek J., Srokosz K., Błeszyn´ski L., Zajączkowska J., 2014. Adsorpcyjne usuwanie CO2 ze spalin kotłowych. Energetyka, 1, 15–19.
  • 25. Paderewski M.L., 1999. Procesy adsorpcyjne w inżynierii chemicznej. WNT, Warszawa.
  • 26. Sarbak Z., 2000. Adsorpcja i adsorbenty. Teoria i zastosowanie. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań.
  • 27. Siriwardane R. V., Shen M.-S., Fisher E., 2005. Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels, 19, 1153–1159. DOI: 10.1021/ef040059h.
  • 28. Stewart C., Hessami M. A., 2005. A study of methods of carbon dioxide capture and sequestration – the sustainability of a photosynthetic bioreactor approach. Energ. Convers. Manage., 46, 403–420. DOI: 10.1016/j.enconman.2004.03.009.
  • 29. Thomas W. J., Crittenden B., 1998. Adsorption technology and design. Butterworth-Heinemann.
  • 30. Toth J. (Ed.), 2001. Adsorption: Theory, modelling, and analysis. Marcel Dekker, Inc.
  • 31. Wang Y., LeVan M.D., 2009. Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A. J. Chem. Eng. Data, 54, 2839–2844. DOI: 10.1021/je800900a.
  • 32. Yang H., Xu Z., Fan M., Gupta R., Slimane R. B., Bland A. E., Wright I., 2008. Process in carbon dioxide separation and capture: A review. J. Environ. Sci., 20, 14–27. DOI: 10.1016/S1001-0742(08)60002-9.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee4e3b97-0007-4f42-9061-f6d29d5b0a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.