PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Drive System Operation of a Wind Power Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents experimental and theoretical studies concerning the possibility of using a controlled hydrodynamic clutch in a wind power plant’s drive system. The hydrodynamic clutch is controlled by changing the distance between the hydrodynamic clutch rotors. The control system is supposed to maintain a constant angular velocity of the electric generator shaft. The considered method of control has not been used so far in power plant's drive systems. The advantages of using a controlled hydrodynamic clutch is simple structure, high durability and low weight of the entire drive system. The equations of the mathematical model for the drive system are formulated on the basis of: the balance of torques and the equations of the hydrodynamic clutch with retractable rotors. The equations are based on the one-dimensional flow of the working fluid along the mean line of the stream. The model calculations are conducted numerically. In order to be able to determine the coefficients of the mathematical model, experimental research is conducted on a test bench designed specifically for this purpose. The research determines how the rotation direction and size of the gap between rotors influences the torque transferred by the hydrodynamic clutch, for selected values of the clutch’s filling degree and the working fluid’s temperature. On the basis of the model calculations results it was determined that a hydrodynamic clutch controlled by increasing the distance between rotors may be successfully used in drive systems of wind power plants to maintain a constant angular velocity of the electric generator shaft.
Twórcy
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Malczewskiego 29, 26-600 Radom, Poland
  • University’s Branch in Sandomierz, Jan Kochanowski University of Kielce, Żeromskiego 5, 25-369 Kielce, Poland
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Malczewskiego 29, 26-600 Radom, Poland
  • University’s Branch in Sandomierz, Jan Kochanowski University of Kielce, Żeromskiego 5, 25-369 Kielce, Poland
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Malczewskiego 29, 26-600 Radom, Poland
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
  • 1. Basak P., Chowdhury S., Halder nee Dey S., Chowdhury S.P. A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid. Renewable and Sustainable Energy Reviews 2012; 16(8): 5545-5556. https://doi.org/10.1016/j.rser.2012.05.043.
  • 2. Ramabhotla S. and Bayne B.S. Cost and availability optimization of wind energy with distributed energy resources of a microgrid. Wind Engineering 2019; 43(6): 559-572. https://doi.org/10.1177/0309524X18820019.
  • 3. Leary J. et al. Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power. Renewable and Sustainable Energy Reviews 2020; 133: 110240. https://doi.org/10.1016/j.rser.2020.110240.
  • 4. Ismaiel A. Wind turbine blade dynamics simulation under the effect of atmospheric turbulence. Emerging Science Journal 2023; 7(1): 162-176. https://doi.org/10.28991/ESJ-2023-07-01-012.
  • 5. Adanta D., Sari D.P., Syofii I., Prakoso A.P., Ade Saputra M.A., Thamrin I. Performance comparison of crossflow turbine configuration upper blade convex and curvature by computational method. Civil Engineering Journal 2023; 9(1): 154-165. http://dx.doi.org/10.28991/CEJ-2023-09-01-012.
  • 6. Tahiri F.E., Chikh K., Khafallah M. Optimal management energy system and control strategies for isolated hybrid solar-wind-battery-diesel power system. Emerging Science Journal 2021; 5(2): 111-124. http://dx.doi.org/10.28991/esj-2021-01262.
  • 7. Staudt L. Design and development of small wind turbines. WIT Transactions on State of the Art in Science and Engineering. WIT Press, 2010: 257-276.
  • 8. Díaz-González F., Sumper A., Gomis-Bellmunt O., Villafáfila-Robles R. A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 2012; 16(4): 2154-2171. https://doi.org/10.1016/j.rser.2012.01.029.
  • 9. Apostolou D. and Enevoldsen P. The past, present and potential of hydrogen as a multifunctional storage application for wind power. Renewable and Sustainable Energy Reviews 2019; 112: 917-929. https://doi.org/10.1016/j.rser.2019.06.049.
  • 10. Blaabjerg F., Liserre M., Ma K. Power electronics converters for wind turbine systems. IEEE Transactions on Industry Applications 2012; 48(2): 708-719. https://doi.org/10.1109/TIA.2011.2181290.
  • 11. Hippel S., Jauch C., Ritschel U. Hydraulicpneumatic flywheel configurations for controlling the inertia of a wind turbine rotor. Wind Engineering 2019; 43(2): 114-132. https://doi.org/10.1177/0309524X18780386.
  • 12. Hocine L., Menaa M., Yazid K. Sensorless control of wind power generator with flywheel energy storage system. Wind Engineering 2021; 45(2): 257-277. https://doi.org/10.1177/0309524X19884709.
  • 13. Müller H. et al. Grid compatibility of variable speed wind turbines with directly coupled synchronous generator and hydro-dynamically controlled gearbox. In 6th International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, Delft, Netherlands, 2006, 307-315.
  • 14. Rommel D.P., Maio D.D., Tinga T. Calculating loads and life-time reduction of wind turbine gearbox and generator bearings due to shaft misaligment. Wind Engineering 2021; 45(3): 547-568. https://doi.org/10.1177/0309524X20914022.
  • 15. Lopes J.J.A., Vaz J.R.P., Mesquita A.L.A., Blanco C.J.C. An approach for the dynamic behavior of hydrokinetic turbines. Energy Procedia 2015; 75: 271-276. https://doi.org/10.1016/j.egypro.2015.07.334
  • 16. Lunney E., Ban M., Duic N., Foley A. A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland. Renewable and Sustainable Energy Reviews 2017; 68(2): 899-911. https://doi.org/10.1016/j.rser.2016.08.014.
  • 17. WinDrive. Voith Turbo. Information brochure nr cr606en, 2009.
  • 18. Brun K., Meyenberg C., Thorp J., Kurz R. Hydrodynamic torque converters for oil and gas compression and pumping applications: basic principles, performance characteristics and applications. In 44th Turbomachinery and 31st Pump Symposia, Houston, Texas, 2015, 1-14.
  • 19. Stesin S.P. Blade machines and hydrodynamic torque converters. Machinostrjenie, 1990 (in Russian).
  • 20. Weston E.B. Theory and design of automotive transmission components. Butterworth, 1967.
  • 21. Clements H.A. Stopping and reversing high power ships. The American Society of Mechanical Engineers 1994; 89-GT-231: 1-11. https://doi.org/10.1115/89-GT-231.
  • 22. Olszak A., Osowski K., Kęsy Z., Kęsy A. Modelling and testing of a hydrodynamic clutch filled with electrorheological fluid in varying degree. Journal of Intelligent Material Systems and Structures 2019; 30(4): 649-660. https://doi.org/10.1177/1045389X18818780.
  • 23. Olszak A., Osowski K., Kęsy Z., Kęsy A. Investigation of hydrodynamic clutch with MR fluid. Journal of Intelligent Material Systems and Structures 2019; 30(1): 155-168. https://doi.org/10.1177/1045389X18803463.
  • 24. Madeja J., Kęsy Z., Kęsy A. Application of ER fluid in hydrodynamic clutch. Smart Materials and Structures 2011; 20: 105005. https://doi.org/10.1088/0964-1726/20/10/105005.
  • 25. Kotliński J. et al. Fabrication of hydrodynamic torque converter impellers by using the selective laser sintering method. Rapid Prototyping Journal 2013; 19(6): 430-436. https://doi.org/10.1108/RPJ04-2011-0043.
  • 26. Kęsy A. and Kotliński J. Mechanical properties of parts produced by using polymer jetting technology. Archives of Civil and Mechanical Engineering 2010; 10(3): 37-50. https://doi.org/10.1016/s1644-9665(12)60135-6.
  • 27. Kotlinski J., Kęsy Z., Kęsy A., Jackson M., Parkin R. Dimensional deviations of machine parts produced in laser sintering technology. International Journal of Rapid Manufacturing 2009; 1(1): 88-98. https://doi.org/10.1504/ijrapidm.2009.028933.
  • 28. Ishihara T.A study of hydraulic torque converter. Report of University of Tokyo 1955; 5: 150-202.
  • 29. Hrovat D. and Tobler W. Bond graph modelling and computer simulation of automotive torque converters. Journal of the Franklin Institute 1985; 319(1-2): 93-114. https://doi.org/10.1016/0016-0032(85)90067-5.
  • 30. Jaschk P. Mathematische modellierung des betriebs verhaltens hydrodynamischer kupplungen mit hybriden modell ansätzen. Mitteilungen aus dem Institut für Mechanik, 2000.
  • 31. Andersson S. On hydrodynamic torque converters. Transactions of Machine Elements Divison. Lund Technical University Lund Sweden, 1982.
  • 32. Jung J. H., Kang S., Hur N. A numerical study of a torque converter with various methods for the accuracy improvement of performance prediction. Progress in Computational Fluid Dynamics, an International Journal 2011; 11(3-4): 261-268. https://doi.org/10.1504/PCFD.2011.041027.
  • 33. Luo Y., Zuo Z.G., Fan H.G., Zhung W.L. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model. IOP Conference Series: Materials Science and Engineering 2013; 52: 072022. http://dx.doi.org/10.1088/1757-899X/52/7/072022.
  • 34. Schweitzer J. and Gandham J. Computational fluid dynamics in torque converter: validation and application. International Journal of Rotating Machinery 2003; 9: 411-418. https://doi.org/10.1155/S1023621X03000393.
  • 35. Liu C. et al. Large eddy simulation for improvement of performance estimation and turbulent flow analysis in a hydrodynamic torque converter. Engineering Applications Computational Fluid Mechanics 2018; 12(1): 635-651. https://doi.org/10.1080/19942060.2018.1489896.
  • 36. Kęsy A. and Kęsy Z. Damping characteristics of a transmission system with a hydrodynamic torque converter. Journal of Sound and Vibration 1993; 163(3): 493-506. https://doi.org/10.1006/jsvi.1993.1308.
  • 37. Murin J. A machine aggregate with hydrodynamic power transmission at periodic loading. Mechanism and Machine Theory 2001; 36(1): 77-92. https://doi.org/10.1016/S0094-114X(00)00029-X.
  • 38. Kęsy Z. and Kęsy A. Application of sensitivity methods to the improvement of a hydrodynamic torque converter manufacturing process. International Journal of Computer Applications in Technology 1993; 6(1): 35-38. https://doi.org/10.1504/IJCAT.1993.062612.
  • 39. Kęsy Z. and Kęsy A. Computer–aided method to calculate coefficients in dynamic equations for multi–element torque converter. International Journal of Vehicle Design 1992; 13(2): 134-143. https://doi.org/10.1504/IJVD.1992.061718.
  • 40. Behrens H., Jaschke P., Steinhausen J., Waller H. Modeling of technical systems: Application to hydrodynamic torque converters and couplings. Mathematical and Computer Modelling of Dynamical Systems 2000; 6(3): 223-250. https://doi.org/10.1076/1387-3954(200009)6:3;1-I;FT223.
  • 41. Kubo M., Ejiri E., Kumada H., Ishii Y. Improvement of prediction accuracy for torque converter performance: One-dimensional flow theory reflecting the stator blade geometry 1994; JSAE Review. 15(4): 309-314. https://doi.org/10.1016/0389-4304(94)90212-7.
  • 42. Kęsy A. and Kądziela A. Construction optimization of hydrodynamic torque converter with application of genetic algorithm. Archives of Civil and Mechanical Engineering 2011; 11(4): 905-920. https://doi.org/10.1016/s1644-9665(12)60086-7.
  • 43. Vaz J.R.P., Wood D.H., Bhattacharjee D., Lins E.F. Drivetrain resistance and starting performance of a small wind turbine. Renewable Energy 2018; 117: 509-519. https://doi.org/10.1016/j.renene.2017.10.071.
  • 44. Farias G.M., Galhardo M.A.B., Vaz J.R.P., Pinho J.T. A steadystate based model applied to small wind turbines. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2019; 41: 209. https://doi.org/10.1007/s40430-019-1704-0.
  • 45. Fu L., Wei Y., Fang S., Tian G., Zhou X. A wind energy generation replication method with wind shear and tower shadow effects. Advances in Mechanical Engineering 2018; 10(3): 1-11. https://doi.org/10.1177/1687814018759216.
  • 46. Adibi Asl H., Azad N.L., McPhee J. Math-based torque converter modelling to evaluate damping characteristics and reverse flow mode operation. International Journal of Vehicle Systems Modelling and Testing 2014; 9(1): 36-55. https://doi.org/10.1504/IJVSMT.2014.059155.
  • 47. Adibi Asl H., Azad N.L. and McPhee J. Modeling torque converter characteristics in automatic drivelines: Lock-up clutch and engine braking simulation. In: Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. International Conference on Advanced Vehicle Technologies, Chicago, Illinois, USA, 2013, 359-367.
  • 48. Szczepaniak C., Kęsy A., Kęsy Z. Damping performance of power transmission system with hydraulic torque converter. Vehicle System Dynamics 1991; 20(5): 283-295.
  • 49. Kęsy Z. and Kęsy A. Dynamic aspects of a hydrodynamic torque converter working in a transmission system. Machine Vibration 1995; 4: 152-160.
  • 50. Ishihara T. and Emori R.I. Torque converter as a vibrator damper and its transient characteristics. SAE Technical Paper 1966; 660368. https://doi.org/10.4271/660368.
  • 51. Whitfield A., Wallace F.J., Patel A. Design of three element hydrokinetic torque converters. International Journal of Mechanical Sciences 1983; 25(7): 485-497. https://doi.org/10.1016/0020-7403(83)90041-3.
  • 52. Kotwicki A.J. Dynamic models for torque converter equipped vehicles. SAE Technical Paper 1982; 820393. https://doi.org/10.4271/820393.
  • 53. Kęsy Z. Hydrodynamic torque converter controlled by properties of working fluid. Politechnika Radomska, 2003 (in Polish).
  • 54. Jandasek V.J. The design of a single-stage three-element torque converter. SAE Technical Paper 1961; 610576. https://doi.org/10.4271/610576.
  • 55. Iwanicki W. et al. Experimental research concerning hydrodynamic clutches controlled by increasing distance between rotors. Advances in Science and Technology Research Journal 2021; 15(1): 218-229. https://doi.org/10.12913/22998624/132214.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee49de78-75b4-4d81-bc91-c6c9cbe29e97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.