PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Liquid vibrations in cylindrical tanks with and without baffles under lateral and longitudinal excitations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is devoted to issues of estimating free surface elevations in rigid cylindrical fluid-filled tanks dunder external loadings. The possibility of baffles installation is provided. The liquid vibrations caused by lateral and longitudinal harmonic loadings are under consideration. Free, forced and parametrical vibrations are examined. Modes of the free liquid vibrations are considered as basic functions for the analysis of forced and parametric vibrations. The modes of the free liquid vibrations in baffled and un-baffled cylindrical tanks are received by using single-domain and multi-domain boundary element methods. Effects of baffle installation are studied. The problems of forced vibrations are reduced to solving the systems of second order ordinary differential equations. For parametric vibrations the system of Mathieu equations is obtained. The numerical simulation of free surface elevations at different loadings and baffle configurations is accomplished. Beat phenomena effects are considered under lateral harmonic excitations. The phenomenon of parametric resonance is examined under longitudinal harmonic excitations.
Rocznik
Strony
117--132
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Podgorny Institute of Mechanical Engineering Problems of the Ukrainian Academy of Sciences UKRAINE
  • V.N. Karazin Kharkiv National University UKRAINE
  • Podgorny Institute of Mechanical Engineering Problems of the Ukrainian Academy of Sciences UKRAINE
autor
  • Podgorny Institute of Mechanical Engineering Problems of the Ukrainian Academy of Sciences UKRAINE
  • M.K. Yangel Yuzhnoye State Design Office UKRAINE
Bibliografia
  • [1] Kumar R. (1971): Flexural vibrations of fluid-filled circular cylindrical shells.– Acoustica, vol.24, No.3, pp.137-146.
  • [2] Biswal K.C., Bhattacharyya S.K. and Sinha P.K. (2004): Dynamic characteristics of liquid filled rectangular tank with baffles. – IE (I) Journal-CV, vol.84, pp.145-148.
  • [3] Abramson H.N. (2000): The dynamic behaviour of liquids in moving containers. – NASA SP- 106, Washington, D.C., 1966, updated by Dodge, F.T., Southwest Research Institute, pp.23-37.
  • [4] Ibrahim R.A. (2005): Liquid Sloshing Dynamics. Theory and Applications. – Cambridge University Press.
  • [5] Ru-De F. (1993): Finite element analysis of lateral sloshing response in axisymmetric tanks with triangular elements. – Computational Mechanics, vol.12, pp.51-58.
  • [6] Cho J.R., Lee H.W. and Ha S.Y. (2005): Finite element analysis of resonant sloshing response in 2-D baffled tank. – Journal of Sound and Vibration, vol.288, pp.829-845.
  • [7] Faltinsen O.M. and Timokha A.N. (2012): Analytically approximate natural sloshing modes for spherical tank shape. – J. Fluid Mech., vol.703, pp.391-401.
  • [8] Kim M.S. and Lee W.I. (2003): A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: New free surface-tracking algorithm and its verification. – International Journal for Numerical Methods in Fluids, vol.42, pp.765-790.
  • [9] Kim M.S., Park J.S. and Lee W.I. (2003): A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part II: application to the cavity filling and sloshing problems. – International Journal for Numerical Methods in Fluids, vol.42, pp.791-812.
  • [10] Strelnikova E., Yeseleva E., Gnitko V. and Naumenko V. (2010): Free and forced vibrations of the shells of revolution interacting with the liquid. – Proc. of XXXII Conference “Boundary elements and other mesh reduction methods”, WITPress, Transaction on Modeling and Simulation, vol.50, pp.203-211.
  • [11] Gnitko V., Marchenko U., Naumenko V. and Strelnikova E. (2011): Forced vibrations of tanks partially filled with the liquid under seismic load. – Proc. of XXXIII Conference “Boundary elements and other mesh reduction methods” WITPress, Transaction on Modeling and Simulation, vol.52, pp.285-296.
  • [12] Choudhary N. and Bora S.N. (2017): Linear sloshing frequencies in the annular region of a circular cylindrical container in presence of a rigid baffle. – Sadhana-Academy Proceedings in Engineering Sciences, vol.42, No.5, pp.805-815.
  • [13] Gnitko V., Naumemko Y. and Strelnikova E. (2017): Low frequency sloshing analysis of cylindrical containers with flat and conical baffles.– International Journal of Applied Mechanics and Engineering, vol.22, No.4, pp.867-881.
  • [14] Wang J., Wang Ch. and Liu J. (2019): Sloshing reduction in a pitching circular cylindrical container by multiple rigid annular baffles. – Ocean Engineering, vol.171, No.1, pp.241-249.
  • [15] Miles J.W. (1958): Ring damping of free surface oscillations on a circular tank. – J. Appl. Mech., vol.25, No.2, pp.274-276.
  • [16] Gedikli A. and Erguven M.E. (2003): Evaluation of sloshing problem by variational boundary element method. – Engineering Analysis with Boundary Elements, vol.27, pp.935-943.
  • [17] Brebbia C.A., Telles J.C.F. and Wrobel L.C. (1984): Boundary Element Techniques– Springer-Verlag: Berlin and New York.
  • [18] Gnitko V., Degtyarev K., Naumenko V. and Strelnikova E. (2018): Coupled BEM and FEM analysis of fluidstructure interaction in dual compartment tanks. – Int. Journal of Computational Methods and Experimental Measurements, vol.6, No.6, pp.976-988.
  • [19] Ravnik J., Strelnikova E., Gnitko V., Degtyarev K. and Ogorodnyk U. (2016): BEM and FEM analysis of fluidstructure interaction in a double tank.– Engineering Analysis with Boundary Elements, vol.67, pp.13-25.
  • [20] Wijngaarden Leen van. (2007): Prandtl–Batchelor flows revisited. – J. Fluid Dynamics Research, vol.39, pp.267-278.
  • [21] Gavrilyuk I., Lukovsky I., Trotsenko Yu. and Timokha A. (2006): Sloshing in a vertical circular cylindrical tank with an annular baffle. Part 1. Linear fundamental solutions. – Journal of Engineering Mathematics, vol.54, pp.71-88.
  • [22] Frenkel D. and Portugal R. (2001): Algebraic methods to compute Mathieu functions. – Journal of Physics A: Mathematical and General, vol.34, pp.3541-3551.
  • [23] Butikov E. (2018): Analytical expressions for stability regions in the Ince–Strutt diagram of Mathieu equation.–American Journal of Physics, vol.86, pp.257-267.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee497b27-894d-4aa7-bd38-0eb56a198c4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.