PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Armature MMF and electromagnetic performance analysis of dual three-phase 10-pole/24-slot permanent magnet synchronous machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractional-slot concentrated-winding permanent magnet synchronous machines (FSCW-PMSMs) have a good prospect of application in the drive system of electric and hybrid electric vehicles. However, the armature magnetomotive force (MMF) of FSCWPMSM contains a large number of space harmonics, which induce large magnet eddycurrent loss (ECL). To solve this problem, a dual three-phase 10-pole and 24-slot winding layout is proposed.MMFharmonic analysis shows that the 1st, 7th and 17th space-harmonic winding factors of the proposed winding can be reduced by 100%, 87% and 87% respectively, compared with a dual three-phase 10-pole and 12-slot winding. Electromagnetic performances of the proposed machine under rated sinusoidal current supply and space vector pulse-width-modulated (SVPWM) voltage supply are investigated based on 2D finite-element analysis. It is shown that the proposed machine can meet the requirement of torque and efficiency in the full speed range. Especially, magnet ECL can be reduced greatly due to the reduction of the 7th and 17th space harmonics.
Rocznik
Strony
189--210
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
autor
  • College of Energy and Electrical Engineering, Hohai University Jiangsu, China
autor
  • School of Electrical and Information Engineering, Tianjin University Tianjin, China
autor
  • College of Energy and Electrical Engineering, Hohai University Jiangsu, China
autor
  • Electric Power Science Research Institute, Jiangsu Electric Power Company Jiangsu, China
autor
  • College of Energy and Electrical Engineering, Hohai University Jiangsu, China
autor
  • College of Energy and Electrical Engineering, Hohai University Jiangsu, China
Bibliografia
  • [1] Ma W.M., Wang D., Cheng S.W., Chen J.Q., Common basic scientific problems and development of leading-edge technology of high performance motor system, Proceedings of the Chinese Society of Electrical Engineering, vol. 36, no. 8, pp. 2025–2035 (2016), DOI: 10.13334/j.0258-8013.pcsee.2016.08.001.
  • [2] Gan X.G., Fan Z.N., Li J.C., Analysis of electromagnetic performance of the interior permanent magnet brushless DC motor with stator slot skewed structure based on quasi-3D moving electromagnetic-field circuit coupling calculation, Archives of Electrical Engineering, vol. 71, no. 1, pp. 159–174 (2022), DOI: 10.24425/aee.2022.140203.
  • [3] Zhang L., Zhu X.Y., Zuo Y.F., Overview of fault-tolerant technologies of rotor permanent magnet brushless machine and its control system for electric vehicles, Proceedings of the Chinese Society of Electrical Engineering, vol. 39, no. 6, pp. 1792–1802 (2019), DOI: 10.13334/j.0258-8013.pcsee.181699.
  • [4] Qiu H.B., Zhang S.B., Rotor optimization of axial-radial flux type synchronous machine based on magnetic flux leakage, Archives of Electrical Engineering, vol. 70, no. 3, pp. 551–566 (2021), DOI: 10.24425/aee.2021.137573.
  • [5] Palangar M.F., Soong W.L., Bianchi N., Wang R.-J., Design and Optimization Techniques in Performance Improvement of Line-Start Permanent Magnet Synchronous Motors: A Review, IEEE Transactions on Magnetics, vol. 57, no. 9, pp. 1–14 (2021), DOI: 10.1109/TMAG.2021.3098392.
  • [6] Palangar M.F., Soong W.L., Mahmoudi A., Outer and Inner Rotor Line-Start Permanent-Magnet Synchronous Motors: An Electromagnetic and Thermal Comparison Study, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4226–4233 (2021), DOI: 10.1109/ECCE47101.2021.9595574.
  • [7] Vidanalage B.D.S.G., Mukundan S., Li W.L., Kar N.C., An Overview of PM Synchronous Machine Design Solutions for Enhanced Traction Performance, International Conference on Electrical Machines (ICEM), pp. 1697–1703 (2020), DOI: 10.1109/ICEM49940.2020.9270882.
  • [8] Bonthu S.S.R., Islam M.Z., Choi S., Performance Review of Permanent Magnet assisted Synchronous Reluctance Traction Motor Designs, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1682–1687 (2018), DOI: 10.1109/ECCE.2018.8558230.
  • [9] Bao X.H., Liu J.W., Sun Y., Wu C.J., Review and prospect of low-speed high-torque permanent magnet machines, Transactions of China Electrotechnical Society, vol. 34, no. 6, pp. 1148–1160 (2019), DOI: 10.19595/j.cnki.1000-6753.tces.171743.
  • [10] Fan X.G., Zhang B., Qu R.H., Li D.W., Li J., Huo Y.-S., Comparative thermal analysis of IPMSMs with integral-slot distributed-winding (ISDW) and fractional-slot concentrated-winding (FSCW) for electric vehicle application, IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3577–3588 (2019), DOI: 10.1109/TIA.2019.2903187.
  • [11] Fornasiero E., Bianchi N., Bolognani S., Slot harmonic impact on rotor losses in fractional-slot permanent-magnet machines, IEEE Transactions on Industrial Electronics, vol. 59, no. 6, pp. 2557–2564 (2012), DOI: 10.1109/TIE.2011.2168794.
  • [12] Tang R.Y., Chen P., Tong W.M., Han X.Y., Analytical calculation of eddy current loss accounting for eddy current reaction, Transactions of China Electrotechnical Society, vol. 30, no. 24, pp. 1–10 (2015), DOI: 10.19595/j.cnki.1000-6753.tces.2015.24.001.
  • [13] Sun Q.G., Deng Z.Q., Zhang Z.M., Analytical calculation of rotor eddy current losses in high speed permanent magnet machines accounting for influence of slot opening, Transactions of China Electrotechnical Society, vol. 33, no. 9, pp. 1994–2004 (2018), DOI: 10.19595/j.cnki.1000-6753.tces.170245.
  • [14] Yokoi Y., Higuchi T., Stator slitting of 12-Slot 10-Pole concentrated winding motors, IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4377–4385 (2018), DOI: 10.1109/TIA.2018.2846591.
  • [15] Dajaku G., Xie W., Gerling D., Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design, IEEE Transactions on Magnetics, vol. 50, no. 5, pp. 1–12 (2014), DOI: 10.1109/TMAG.2013.2294754.
  • [16] Wang Y.H., Ma J.G., Liu C.C., Lei G., Guo Y.G., Zhu J.G., Reduction of magnet eddy current loss in PMSM by using partial magnet segment method, IEEE Transactions on Magnetics, vol. 55, no. 7, pp. 1–5 (2019), DOI: 10.1109/TMAG.2019.2895887.
  • [17] Dotz B., Gerling D., Windings with various numbers of turns per phasor, International Electric Machines and Drives Conference (IEMDC), pp. 1–7 (2017), DOI: 10.1109/IEMDC.2017.8002007.
  • [18] Alberti L., Bianchi N., Theory and design of fractional-slot multilayer windings, IEEE Transactions on Industry Applications, vol. 49, no. 2, pp. 841–849 (2013), DOI: 10.1109/TIA.2013.2242031.
  • [19] Abdel-Khalik A.-S., Ahmed S., Massoud A.-M., Effect of multilayer windings with different stator winding connections on interior PM machines for EV applications, IEEE Transactions on Magnetics, vol. 52, no. 2, pp. 1–7 (2016), DOI: 10.1109/TMAG.2015.2495301.
  • [20] Oleschuk V., Grandi G., Six-phase motor drive supplied by four voltage source inverters with synchronized space-vector PWM, Archives of Electrical Engineering, vol. 60, no. 4, pp. 445–458 (2011), DOI: 10.2478/v10171-011-0037-0.
  • [21] Chen Z.F., Xing N., Ma H.Z., Li Z.X., Zhang H.Y., Analytical modeling and analysis of magnet harmonic loss in fractional slot permanent-magnet machines, Transactions of China Electrotechnical Society, vol. 37, no. 14, pp. 3514–3527 (2022), DOI: 10.19595/j.cnki.1000-6753.tces.210112.
  • [22] Chen J., Wang Z., Wang Y.-B., Cheng M., Analysis and control of NPC-3L inverter fed dual three-phase PMSM drives considering their asymmetric factors, Journal of Power Electronics, vol. 17, no. 6, pp. 1500–1511 (2017), DOI: 10.6113/JPE.2017.17.6.1500.
  • [23] Chen Q.X., Liang D.L., Jia S.F., Wan X.B., Analysis of multi-phase and multi-layer factional-slot concentrated-winding on PM eddy current loss considering axial segmentation and load operation, IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1–6 (2018), DOI: 10.1109/TMAG.2018.2841874.
  • [24] Islam M.-S., Kabir M.-A., Mikail R., Husain I., A systematic approach for stator MMF harmonic elimination using three-layer fractional slot winding, IEEE Transactions on Industry Applications, vol. 56, no. 4, pp. 3516–3525 (2020), DOI: 10.1109/TIA.2020.2984195.
  • [25] Islam M.-S., Kabir M.-A., Mikail R., Husain I., Space-shifted wye–delta winding to minimize space harmonics of fractional-slot winding, IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2520–2530 (2020), DOI: 10.1109/TIA.2020.2975766.
  • [26] Abdel-Khalik A.-S., Ahmed S., Massoud A.-M., A six-phase 24-Slot/10-Pole permanent-magnet machine with low space harmonics for electric vehicle applications, IEEE Transactions on Magnetics, vol. 52, no. 6, pp. 1–10 (2016), DOI: 10.1109/TMAG.2016.2535230.
  • [27] Sun H.Y., Wang K., Zhu S.S., Liu C., Performance comparisons of fractional slot surface-mounted permanent magnet machines with slot-harmonic-only windings, IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 995–1004 (2021), DOI: 10.1109/TEC.2020.3027007.
  • [28] Reddy P.B., Huh K., EL-Refaie A.M., Generalized approach of stator shifting in interior permanent-magnet machines equipped with fractional-slot concentrated windings, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 5035–5046 (2014), DOI: 10.1109/TIE.2013.2297515.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee446aa0-a3b8-485e-90a5-be3265303ad8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.