PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of nickel adsorption onto low Jordanian zeolite dose: efficiency and Langmuir – Freundlich behaviour

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, nickel adsorption onto low Jordanian zeolite dose is being investigated. Natural zeolite doses were stirred continuously with nickel solutions in batch reactors at 180 RPM for 24 hours, where the temperature was set to 20°C. The pH was initially 4.5 and reached 5.2 at equilibrium. The removal efficiency of nickel reaches maximum value when the initial nickel concentration is around 1 ppm and then tends to decrease when the initial nickel concentration increases above 1 ppm. The optimal nickel removal reaches 65% when the initial nickel concentration is 1 ppm and the zeolite dose is 26 mg∙dm–3. This study investigates the behaviour of nickel removal and modelling isotherms below and above this critical peak point. At this level of zeolite dose, the adsorption does not follow either Freundlich or Langmuir isotherms, but rather, it follows Freundlich for the data plot just below the peak point with the highest coefficient of determination (R2) equals (0.98) when the zeolite dose is (26 mg∙dm–3), whereas it follows Langmuir for the data plot just above the peak point with the highest coefficient of determination (R2) equals (0.99) when the zeolite dose is (10 mg∙dm–3). These findings clarify the theory behind each isotherm and can be used to find new information for efficient treatment techniques.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
150--157
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology, Irbid, 22110, 00962-2-7201000 22139; Jordan
  • Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology, Irbid, 22110, 00962-2-7201000 22139; Jordan
  • Department of Chemical and Biochemical Engineering, University of Western Ontario, Canada
Bibliografia
  • ADAMSON A.W., GAST A.P. 1967. Physical chemistry of surfaces. Vol. 150 pp. 180. New York. Interscience publishers.
  • AL DWAIRI R., AL-RAWAJFEH A. 2012. Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. Journal of the University of Chemical Technology and Metal-lurgy. Vol. 47(1) p. 69–76.
  • AL-ANBER M., AL-ANBER Z.A. 2008. Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination. Vol. 225(1–3) p. 70–81. DOI 10.1016/j.de-sal.2007.07.006.
  • AL-JABARI M., ABUALFAILAT M., SHAHEEN S. 2012. Treating leather tanning wastewater with stone cutting solid waste. Clean Soil Air Water. Vol. 40(2) p. 206–210. DOI 10.1002/ CLEN.201000431.
  • AL-JABARI M., ZAHDEH N., IQEFAN N., DWEIK H. 2015. Technical feasibility of treating dairy wastewater with natural low cost adsorbents. International Journal of Environment and Water. Vol. 4(4) p. 31–39.
  • AL-JABARI M. 2016. Kinetic models for adsorption on mineral particles comparison between Langmuir kinetics and mass transfer. Environmental Technology & Innovation. Vol. 6 p. 27–37. DOI 10.1016/j.eti.2016.04.005.
  • AL-JABARI M. 2017. Kinetic mass transfer adsorption model for treating dairy wastewater with stone cutting solid waste. Environmental Technology & Innovation. Vol. 7 p. 21–29. DOI 10.1016/j. eti.2016.11.004.
  • AL-RASHDAN Z.A.F. 1994. Treatment of domestic waste water effluent from stabilization ponds using Jordanian zeolitic tuffs. MSc Thesis. Yarmouk University, Jordan. pp. 218.
  • ALI A.A.H., EL-BISHTAWI R. 1997. Removal of lead and nickel ions using zeolite tuff. Journal of Chemical Technology & Biotechnology. Vol. 69(1) p. 27–34. DOI 10.1002/(SICI)1097-4660(199705) 69:1<27::AID-JCTB682>3.0.CO;2-J.
  • ALLAWZI M., AL-ASHEH S. 2010. Use of Jordanian natural zeolite as sorbent for removal of cadmium from aqueous solutions. Desalination and Water Treatment. Vol. 22(1–3) p. 349–354. DOI 10.5004/dwt.2010.1200.
  • BABEL S., KURNIAWAN T.A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials. Vol. 97 p. 219–243. DOI 10.1016/S0304-3894(02)00263-7.
  • BAKER H.M., MASSADEH A.M., YOUNES H.A. 2009. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods. Environmental Monitoring and Assessment. Vol. 157(1–4) p. 319–330. DOI 10.1007/s10661-008- 0537-6.
  • CRINI G. 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science. Vol. 30 p. 38–70. DOI 10.1016/j.progpolymsci.2004 .11.002.
  • CRINI G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology. Vol. 97 p. 1061–1085. DOI 10.1016/j.biortech.2005.05.001.
  • DE AGUIAR M.R.M.P., NOVAES A.C., GUARINO A.W.S. 2002. Removal of heavy metals from wastewaters by aluminosilicate. Quimica Nova. Vol. 25 p. 1145–1154.
  • DEMIRBAS E., KOBYA M., KONUKMAN A.E.S. 2008. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. Journal of Hazardous Materials. Vol. 154 p. 787–794. DOI 10.1016/j. jhazmat.2007.10.094.
  • DWIRI I. 1987. A chemical study of the Palagonitic Tuff of Artian area of Jordan with special references to nature, origin and industrial potential of associated zeolite deposits. PhD Thesis. Hull University, UK pp. 408.
  • EL-HAMED S., ABDLEHADI N. 2001. Engineering properties of basalt for constructions use. Natural Resources Authority (Internal Report) pp. 32.
  • FENG N., GUO X., SHA L. 2009. Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials. Vol. 164 p. 1286–1292. DOI 10.1016/j.jhazmat.2008.09.096.
  • FREUNDLICH H.M.F. 1906. Over the adsorption in solution. The Journal of Physical Chemistry. Vol. 57 p. 385–471.
  • FYTIANOS K., VOUDRIAS E., KOKKALIS E. 2000. Sorption–desorption behavior of 2, 4-dichlorophenol by marine sediments. Chemosphere. Vol. 40 p. 3–6. DOI 10.1016/s0045-6535(99)00214-3.
  • GONZALEZ S., LOPEZ-ROLDAN R., CORTINA J.L. 2013. Presence of metals in drinking water distribution networks due to pipe material leaching: A review. Toxicological and Environmental Chemistry. Vol. 95(6) p. 870–889. DOI 10.1080/02772248.2013.840372.
  • GÜZEL F., SAYĞILIB H., SAYĞILIA G.A., KOYUNCUA F. 2015. New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: Characterization, equilibrium and kinetic modeling. Journal of Molecular Liquids. Vol. 206 p. 244–255. DOI 10.1016/j.molliq.2015.02.037.
  • HEDSTROM A. 2001. Ion exchange of ammonium in zeolites: A literature review. Journal of Environmental Engineering. Vol. 127 p. 673– 681. DOI 10.1061/(ASCE)0733-9372(2001)127:8(673).
  • HEIKKINEN P., KORKKA-NIEMI K., LAHTI M., SALONEN V.P. 2002. Groundwater and surface water contamination in the area of the Hitura nickel mine, Western Finland. Environmental Geology. Vol. 42(4) p. 313–329. DOI 10.1007/s00254-002-0525-z.
  • HERZOG R.O. 1909. Kapillarchemie, eine Darstellung der Chemie der Kolloide und verwandter Gebiete. Von Dr. Herbert Freundlich. [Capillary and colloid chemistry]. Leipzig. Verlag der Akademischen Verlagsgesellschaft pp. 591.
  • HOLFORD I.C.R., WEDDERBURN R.W.M., MATTINGLY G.E.G. 1974. A Langmuir two-surface equation as a model for phosphate adsorption by soils. Journal of Soil Science. Vol. 25 p. 242–255. DOI 10.1111/j.1365-2389.1974.tb01121.x.
  • IBRAHIM K. 1997. Geology of Al-Bashiryeh (Aritayn), map no. II-3354. Natural Resources Authority. Geology of Al-Azraq, map no. I- 3553. Natural Resources Authority. Bulletin no. 36.
  • IMAGA C., ABIA A. 2015. Adsorption kinetics and mechanisms of Ni2+ sorption using carbonized and modified sorghum (Sorghum bicolor) hull of two pore sizes (150 μm and 250 μm): A comparative study. International Journal of Chemical Studies. Vol. 2 (5) p. 59–68.
  • Jordan Cement Company 1985. Cement industry and raw materials used. Seminar on Mining Industries. Arab Engineers Union and Jordan Engineers Association. Amman, Jordan 23–25.09.1985 pp. 42.
  • KITSOPOULOS K.P. 1999. Cation-exchange capacity (CEC) of zeolitic volcaniclastic materials: Applicability of the ammonium acetate saturation (AMAS) method. Clays and Clay Minerals. Vol. 47 p. 688–696. DOI 10.1346/CCMN.1999.0470602.
  • KORKUNA O., LEBODA R., SKUBISZEWSKA-ZIĘBA J., VRUBLEVS’KA T., GUN’KO V.M., RYCZKOWSKI J. 2006. Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials. Vol. 87 p. 243–254. DOI 10.1016/j.micromeso.2005.08.002.
  • KUNDU S., GUPTA A.K. 2006. Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chemical Engineering Journal. Vol. 122 p. 93–106. DOI 10.1016/j.cej .2006.06.002.
  • LANGMUIR I. 1916. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society. Vol. 38(11) p. 2221–2295. DOI 10.1021/ja02268a002.
  • MALABEH A. 1993. The volcanology, mineralogy and geochemistry of selected pyroclastic cones from NE Jordan and their evaluation for possible industrial applications. PhD Thesis. Universitat Erlangen. Germany.
  • MERCER B.W., AMES L.L. 1978. Zeolite ion exchange in radioactive and municipal wastewater treatment. In: Natural zeolites: occurrence, properties, use. Eds. L.B. Sand, F.A. Mumpton. Elmsford, New York, Oxford. Pergamon Press. p. 451–462.
  • MITTAL H., MAITY A., SINHA RAY S. 2015. The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: Isotherms and kinetic models. The Journal of Physical Chemistry. B. Vol. 119(5) p. 2026–2039. DOI 10.1021/jp5090857.
  • MUMPTON F. 1978. Natural zeolites. A new industrial mineral commodity. In: Natural zeolites: occurrence, properties, use. Eds. L.B. Sand, F.A. Mumpton. Elmsford, New York, Oxford. Pergamon Press p. 3–30.
  • POLLARD S.J.T., FOWLER G.D., SOLLARS C.J., PERRY R. 1992. Low-cost adsorbents for waste and waste-water treatment: a review. Science of the Total Environment. Vol. 116 p. 31–52. DOI 10.1016/0048-9697(92)90363-W.
  • RUSHTON G.T., KARNS C.L., SHIMIZU K.D. 2005. A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Analytica Chimica Acta. Vol. 528 (1) p. 107–113. DOI 10.1016/j.aca.2004.07.048.
  • SHAFEEYAN M.S., WAN DAUD W.M.A., SHAMIRI A. 2014. A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chemical Engineering Research and Design. Vol. 92 (5) p. 961–988. DOI 10.1016/j.cherd.2013.08.018.
  • SPARKS D.L. 2003. Environmental soil chemistry. Elsevier. ISBN 978-0- 12-656446-4 pp. 151.
  • SUZUKI M. 1990. Adsorption engineering. Tokyo. Elsevier Science. ISBN 978-0-44-498802-7 pp. 306.
  • SYERS J.K., BROWMAN M.G., SMILLIE G.W., COREY R.B. 1973. Phosphate sorption by soils evaluated by the Langmuir adsorption equation. Soil Science Society of America Journal. Vol. 37 p. 358–363. DOI 10.2136/sssaj1973.03615995003700030015x.
  • TÓTH G., HERMANN T., DA SILVA M.R., MONTANARELLA L. 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International. Vol. 88 p. 299–309. DOI 10.1016/j.envint.2015.12.017.
  • VAREDA P., VALENTE A.J.M., DURÃES L. 2019. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management. Vol. 246 p. 101–118. DOI 10.1016/j.jenvman.2019.05.126.
  • VHAHANGWELE M., KHATHUTSHELO L.M. 2018. Environmental contamination by heavy metals. In: Heavy metals. Eds. H. Saleh, R. Aglan. Vol. 10 p. 115–132. DOI 10.5772/intechopen.76082.
  • VIJAYARAGHAVAN K., PADMESH T.V.N., PALANIVELU K., VELAN M. 2016. Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three parameter isotherm models. Journal of Hazardous Materials. Vol. B133 p. 304–308. DOI 10.1016/j.jhazmat.2005.10.016.
  • WANG S., ANG H.M., TADÉ M.O. 2008. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere. Vol. 72 p. 1621–1635. DOI 10.1016/j. chemosphere.2008.05.013.
  • WANG S.B., WU H.W. 2006. Environmental-benign utilisation of fly ash as low-cost adsorbents. Journal of Hazardous Materials. Vol. 136 p. 482–501. DOI 10.1016/j.jhazmat.2006.01.067.
  • WEBBER T.W., CHAKKRAVORTI R.K. 1974. Pore and solid diffusion models for fixed-bed adsorbers, AlChE Journal. Vol. 20 p. 228–238. DOI 10.1002/aic.690200204.
  • WYCISZKIEWICZ M., SAEID A., MALINOWSKI P., CHOJNACKA K. 2017. Valorization of phosphorus secondary raw materials by acid-ithiobacillus ferrooxidans. Molecules. Vol. 22 pp. 473. DOI 10.3390/molecules22030473.
  • XIA L.X., SHEN Z., VARGAS T., SUN W.J., RUAN R.M., XIE Z.D., QIU G.Z. 2013. Attachment of acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations. Biotechnology Letters. Vol. 35 p. 2129–2136. DOI 10.1007/s10529-013-1316-1.
  • XU Z., CAI J.-G., PAN B.C. 2013. Mathematically modeling fixed-bed adsorption in aqueous systems. Journal of Zhejiang University SCIENCE A. Vol. 14 p. 155–176. DOI 10.1631/jzus.A1300029.
  • ZELDOWITSCH J. 1934. Adsorption site energy distribution. Acta Physicochimica URSS. Vol. 1 p. 961–973
  • ZHANG W., LI Q., CONG J., WEI B., WANG S. 2018. Mechanism analysis of selective adsorption and specific recognition by molecularly imprinted polymers of Ginsenoside Re. Polymers. Vol. 10(2) pp. 216. DOI 10.3390/polym10020216.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee3fced9-719c-4adc-80b3-bf5e908beafb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.