PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rigid finite element method in modelling the dynamics of risers and considering large deflections

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic analysis of risers often requires the consideration of large deflections. Due to large deflections in slender elements, the distance between the upper and lower ends of the vertical riser is smaller than that resulting from linear theory. Accounting for flexibility means that the length of the riser has to be measured along its curvature. One of the discretisation methods, which includes an analysis of large deflections, is the rigid finite element method (RFEM). This paper presents a numerically effective planar formulation of the method, taking the deflections caused by bending and longitudinal flexibilities into account. The elaborated models are applied in calculations of the static deflections and ‘free frequencies’ of risers. The latter are used for the validation of the models. Investigations are concerned with how a riser’s parameters, the sea current and internal flows all influence the static deflection and frequencies of free vibrations. Analysis of the dynamics of a riser is also carried out. As part of these calculations, it is shown that large horizontal displacements of the lower end of the riser cause simultaneous and significant vertical displacements. This phenomenon is particularly visible when the possibility of rotation of the upper end is eliminated. The riser vibrations, forced by the displacement of its upper end (base), are also simulated. It is shown that, during horizontal displacements of the upper end, especially for longer risers, the effect of large Nonlinear deflections is more than 10 m. The results presented in this paper also indicate how the length of the riser, its filling with the medium, the mass attached to the lower end, or the speed of the current, affect the vertical displacements of the lower end of the riser. These effects can be observed when applying the rigid finite element method for discretisation of the risers.
Rocznik
Tom
Strony
92--99
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • University of Bielsko-Biala, Faculty of Management and Transport, Department of Computer Methods, Bielsko-Biała, Poland
  • University of Bielsko-Biala, Faculty of Management and Transport, Department of Computer Methods, Bielsko-Biała, Poland
  • University of Bielsko-Biala, Faculty of Management and Transport, Department of Computer Methods, Bielsko-Biała, Poland
Bibliografia
  • 1. Chatjigeorgiou IK. A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers. Ocean Eng. 2008; 35: 616–636. https://doi.org/10.1016/j.oceaneng.2008.01.006.
  • 2. Wang Y, Luo S, Yang M, Qin T, Zhao J, Yu G. Analysis of Marine Risers Subjected to Shoal/Deep Water in the Installation Process. Polish Marit Res. 2022; 29: 43–54. https://doi.org/10.2478/pomr-2022-0016.
  • 3. Chen L, Yi H. Dynamic Characteristic Study of Riser with Complex Pre-stress Distribution. Polish Marit Res. 2019; 26: 87–97. https://doi.org/10.2478/pomr-2019-0049.
  • 4. Hong K-S, Shah UH. Vortex-induced vibrations and control of marine risers: A review. Ocean Eng. 2018; 152: 300–15. https://doi.org/10.1016/j.oceaneng.2018.01.086.
  • 5. Kaewunruen S, Mccarthy T, Leklong J, Chucheepsakul S. Influence of joint stiffness on the free vibration of marine riser conveying fluid. Proc. Eighth ISOPE Pacific/Asia Offshore Mech. Symp., Bangkok, Thailand: The International Society of Offshore and Polar Engineers; 2008, pp. 113–20. https://doi.org/ISBN 978-1-880653-52-4.
  • 6. Montoya-Hernandez DJ, Vazquez-Hernandez AO, Cuamatzi R, Hernandez MA. Natural frequency analysis of a marine riser considering multiphase internal flow behavior. Ocean Eng. 2014; 92: 103–113. https://doi.org/10.1016/j.oceaneng.2014.09.039.
  • 7. Chai YT, Varyani KS, Barltrop NDPp. Three-dimensional Lump-Mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect. Ocean Eng. 2002; 29: 1503–1525. https://doi.org/10.1016/S0029-8018(01)00087-7.
  • 8. Jensen GA, Safstrom N, Nguyen TD, Fossen TI. A Nonlinear PDE formulation for offshore vessel pipeline installation. Ocean Eng. 2010; 37: 365–77. https://doi.org/10.1016/j.oceaneng.2009.12.009.
  • 9. Gao G, Cui Y, Qiu X. Prediction of Vortex-Induced Vibration Response of Deep Sea Top-Tensioned Riser in Sheared Flow Considering Parametric Excitations. Polish Marit Res. 2020; 27: 48–57. https://doi.org/10.2478/pomr-2020-0026.
  • 10. Olszewski A, Wodtke M, Wojcikowski A. FEM Analysis and Experimental Tests of Rigid Riser Hanging System. Polish Marit Res. 2018; 25: 108–115. doi:10.2478/pomr-2018-0061.
  • 11. Orcina. OrcaFlex Manual. Cumbria, UK: Orcina Ltd. 2015.
  • 12. RIFLEX 4.10.3 User Guide. 2017.
  • 13. Connelly JD, Huston RL. The dynamics of flexible multibody systems: A finite segment approach-I. Theoretical aspects. Comput Struct. 1994; 50: 255–258. https://doi.org/10.1016/0045-7949(94)90300-X.
  • 14. Connelly JD, Huston RL. The dynamics of flexible multibody systems: A finite segment approach—II. Example problems. Comput Struct. 1994; 50: 259–262. https://doi.org/10.1016/0045-7949(94)90301-8.
  • 15. Xu X, Yao B, Ren P. Dynamics calculation for underwater moving slender bodies based on flexible segment model. Ocean Eng. 2013; 57: 111–127. https://doi.org/10.1016/j.oceaneng.2012.09.011.
  • 16. Kruszewski J, Gawroński W, Wittbrodt E, Najbar F, Grabowski S. Rigid finite element method (Metoda sztywnych elementow skończonych). 1st ed. Warszawa: Arkady; 1975.
  • 17. Wittbrodt E, Adamiec-Wojcik I, Wojciech S. Dynamics of Flexible Multibody Systems Rigid Finite Element Method. 1st ed. Berlin Heidelberg: Springer-Verlag; 2006. https://doi.org/10.1007/978-3-540-32352-5.
  • 18. Szczotka M. A modification of the rigid finite element method and its application to the J-lay problem. Acta Mech. 2011; 220: 183–198. https://doi.org/10.1007/s00707-011-0470-6.
  • 19. Drąg Ł. Modelling of ropes, risers and cranes with the rigid finite element method. Akademia Techniczno-Humanistyczna w Bielsku-Białej; 2021.
  • 20. Wittbrodt E, Szczotka M, Maczyński A, Wojciech S. Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures. 1st ed. Berlin Heidelberg: Springer-Verlag; 2013. https://doi.org/10.1007/978-3-642-29886-8.
  • 21. Adamiec-Wojcik I, Awrejcewicz J, Drąg Ł, Wojciech S. Compensation of top horizontal displacements of a riser. Meccanica. 2016; 51: 2753–2762. https://doi.org/10.1007/s11012-016-0447-6.
  • 22. Adamiec-Wojcik I, Brzozowska L, Wojciech S. The rigid finite element and segment methods in dynamic analysis of risers. In: Uhl T, editor. Adv. Mech. Mach. Sci., Cham: Springer International Publishing; 2019, pp. 3017–3026.
  • 23. Adamiec-Wojcik I, Brzozowska L, Drąg Ł. An analysis of dynamics of risers during vessel motion by means of the rigid finite element method. Ocean Eng. 2015; 106. https://doi.org/10.1016/j.oceaneng.2015.06.053.
  • 24. Ghadimi R. A simple and efficient algorithm for the static and dynamic analysis of flexible marine risers. Comput Struct. 1988; 29: 541–555. https://doi.org/10.1016/0045-7949(88)90364-1.
  • 25. Yin D, Passano E, Lie H, Grytoyr G, Aronsen K, Tognarelli M, et al. Dynamic response of a top-tensioned riser under vessel motion. Proc. Int. Offshore Polar Eng. Conf., Vol. 2018- June, 2018; 979–986.
  • 26. Yin D, Lie H, Russo M, Grytoyr G. Drilling Riser Model Test for Software Verification. J Offshore Mech Arct Eng. 2017; 140. https://doi.org/10.1115/1.4037727.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee3a71a9-fd34-4714-8e8c-5fc8d178c70b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.