PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Changes in the built-up areas at the aeration wedges of City of Warsaw

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zmiany w zabudowie na terenach klinów napowietrzających miasta Warszawy
Języki publikacji
EN
Abstrakty
EN
The main objective of this paper is to present increasing share of built-up areas at the aeration wedges of City of Warsaw. The idea of Warsaw aeration corridors had been arisen in 1916 and was adapted to the present times in 1992, 2006 and 2018 in the planning’s documents which described Warsaw spatial development conditions. The goal for creation these corridors has been to establish the air exchange between areas around the city (especially green areas) and downtown. The analyses were carried out for years: 1992, 1995, 1998, 2001, 2004, 2006, 2009 – based on Landsat-5; 2013 – based on Landsat-8; 2015, 2018 based on Sentinel-2. As a result of research, it was found that aeration wedges had been constantly built-up. In 1992 built-up areas covered 14% (767 ha) of aeration corridors, in 1998 – 17% (918 ha), in 2006 – 24% (1245 ha), in 2013 – 26% (1341 ha), in 2018 – 27% (1383 ha). The largest loss of green areas was noticed as: arable lands and meadows – from 42% to 29%. In addition, during the research it was observed that new buildings have been situated in unfavorable way. New buildings are the walls and barriers to the air masses coming to the downtown.
PL
Głównym celem pracy było zaprezentowanie zmian w zabudowie na obszarach klinów napowietrzających miasta Warszawy. Idea korytarzy napowietrzających narodziła się w 1916, a następnie była zaadaptowana to potrzeb i warunków i obecnych czasów w latach 1992, 2006 i 2018. Opisana ona była w dokumentach dotyczących zagospodarowania przestrzennego Warszawy. Celem, dla którego wyznaczono kliny było zapewnienie wymiany powietrza pomiędzy centrum miasta a terenami podmiejskimi (szczególnie terenami zieleni). Analizy zostały przeprowadzone dla lat 1992, 1995, 1998, 2001, 2004, 2006, 2009 – wykorzystano zobrazowania Landsat 5; 2013 – wykorzystano zobrazowanie z Landsat 8, 2015 i 2018 – wykorzystano zobrazowanie z Sentinel-2. W wyniku badań, stwierdzono, że tereny korytarzy są stale zabudowywane. W roku 1992 obszary zabudowane wynosiły 14% całości powierzchni korytarzy (767 ha), w 1998 – 17% (918 ha), w 2006 – 24% (1245 ha), w 2013 – 26% (1341 ha), a w 2018 – 27% (1383 ha). Zmiany te w największym stopniu, spowodowały straty w obszarach rolniczych i łąkach. Ich powierzchnia w 1992 roku zajmowała 42%, w 2018 było to tylko 29%. Ponadto, podczas badań zaobserwowano, iż nowe budynki budowane są w niekorzystnym położeniu – są one przeszkodą dla swobodnych ruchów mas powietrza.
Rocznik
Strony
37--51
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679, Warsaw, Poland, Tel.: +48 22 3291989, Fax: +48 22 3291950, ORCID: https://orcid.org/0000-0002-2950-1592
  • University of Warsaw, Faculty of Geography and Regional Studies, Department of Geoinformatics, Cartography and Remote Sensing, Warsaw, Poland; Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679, Warsaw, Poland, Tel.: +48 22 3291978, Fax: +48 22 3291950, ORCID: https://orcid.org/0000-0001-8991-7306
Bibliografia
  • [1] Blazejczyk K., Kuchcik M., Milewski P., Dudek W., Kręcisz B., Blazejczyk A., Szmyd J., Degorska B., Palczynski C., (2014): Urban heat island phenomenon in Warsaw. Climatic and urban conditions (in Polish), Wydawnictwo Akademickie Sedno, Warszawa.
  • [2] Capeluto I.G., Yezioro A., Shaviv E., (2003): Climatic aspects in urban design – a case study, Building and Environment 38(2003), pp. 827–835.
  • [3] Cleugh H., Emmanuel R., Endlicher W., Erell E., McGranahan G., Mills G., Ng E., Nickson A., Rosenthal J., Steemer K., (2009): Climate information for improved planning and management of mega cities (needs perspective), Session 8: climate and sustainable cities. In: World Climate Conference-3, Climate Prediction and Information for Decision-making, WMO, Geneva, Switzerland, 23 pp.
  • [4] Grzybowski P., Kaluski M., (2018): Changes in the Bulit-up on the Areas of Warsaw Aeration Wedges, Mapping Urban Areas from Space 2018, Frascati, Italy.
  • [5] He B., (2017): Exploring wind ventilation corridors for urban heat Island mitigation in Sydney, Australia, Australian Climate Change Adaption Research Network for Settlements and Infrastructure Forum and Workshop for Early Career Researchers and Practitioners.
  • [6] Hebbert M., Webb B., (2012): Towards a Liveable Urban Climate – Lessons from Stuttgart, Liveable Cities: Urbanising World: ISOCARP Review 07, International Society of City & Regional Planners: The Hague, pp. 120–137.
  • [7] Hsieh C-M., Huang H-C., (2016): Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation, Computers, Environment and Urban Systems 57(2016), pp. 130–143.
  • [8] Huete A.R., (1988): A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, Vol. 25, issue 3, pp. 259–309. DOI: 10.1016/0034-4257(88)90106-X.
  • [9] Kato S., Huang. H, (2009): Ventilation efficiency of void space surrounded by buildings with wind blowing over built-up urban area, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 97, Issues 7–8, pp. 358–367.
  • [10] Kolokotsa D., Psomas A., Karapidakis E., (2009): Urban heat island in southern Europe: The case study of Hania, Crete, Solar Energy, 83(10), pp. 1871–1883.
  • [11] Le Corbusier, (1943): The Athens charter 1973, Grossman Publishers, New York.
  • [12] Minister of Environment, (2002): Decree of 9th of 2002 about Ecophysiographic Study (in Polish), legal act no. Dz.U. 2002 nr 155 poz. 1298.
  • [13] Ministry of Economy, Labor and Housing of Baden-Württemberg, (2012): Fresh Air Supply, in: Climate Booklet for Urban Development Online – Städtebauliche Klimafibel Online, pp. 221–226.
  • [14] Ng E., (2009): Policies and technical guidelines for urban planning of high-density cities – air ventilation assessment (AVA) of Hong Kong, Building and Environment 44(2009), pp. 1478–1488.
  • [15] Ng E., (2010): Designing for Urban Ventilation, in: E. Ng (ed) Designing High-Density Cities: For Social and Environmental Sustainability, Earthscan, London.
  • [16] Oke T.R., (1987): Boundary layer climates (2nd ed.), Methuen, Inc., USA.
  • [17] Osinska-Skotak K., Zawalich J., (2016): Analysis of land use changes of urban ventilation corridors in Warsaw in 1992-2015, Geographia Polonica 2016, Vol. 89, Issue 3, pp. 345–358.
  • [18] Parliament of the Republic of Poland, (2003): Act of law of 27th march 2003 on Planning and Spatial Development (in Polish), legal act no. Dz.U. 2003 nr 80 poz. 717.
  • [19] Ren C., Spit T., Lenzholzer S., Yim H.L.S., Heusinkveld B., van Hove B., Chen L., Kupski S., Burghardt R., Katzschner L., (2012): Urban Climate Map System for Dutch spatial planning, International Journal of Applied Earth Observation and Geoinformation 18 (2012), pp. 207–221.
  • [20] Rousse J.W., Haas R.H., Schell J.A., Deering D.W., (1974): Monitoring vegetation systems in the Great Plains with ERTS, Third ERTS Symposium, NASA SP-351 I, 309–317.
  • [21] Rozycka W., (1971): Methods of evaluating physiographic conditions for town planning purposes, Prace geograficzne, Nr 90, pp. 135–141.
  • [22] Skorupski J., (2000): Development of Warsaw and increase of “Warsaw’s” part of Vistula. Vistula in Warsaw (in Polish), in: J. Lickiewicz, J. Pawlak, W. Pietruszewicz (ed), Wisla w Warszawie, Warszawa, Dom Wydawniczy ELIPSA, pp. 139–153.
  • [23] Statistics Poland, (2009): Forecast for household during 2008-2035 (in Polish), Warszawa.
  • [24] Suder A., Szymanowski M., (2014): Determination of Ventilation Channels In Urban Area: A Case Study of Wroclaw (Poland), Pure and Applied Geophysics, pp. 965–975.
  • [25] Supreme Administrative Court, (2007): legal act no. II OSK 1028/07.
  • [26] Taylor P.A., (1988): Turbulent wakes in the atmospheric boundary layer, in: W.L. Steffen, O.T. Denmead (eds), Flow and transport in the natural environment: advances and applications, Springer-Verlag, pp. 270–292.
  • [27] Warsaw City Council, (1992): Local General Development Plan of Capital City of Warsaw (in Polish), legal act no. XXXV/199/92.
  • [28] Warsaw City Council, (2001): Local management plan of Capital City of Warsaw including obligatory agreements about creating local management plans for (in Polish), legal act no. XXXVIII/492/2001.
  • [29] Warsaw City Council, (2006): Change of Study of Conditions and Directions of Spatial Development of Capital City of Warsaw – stage II (in Polish), legal act no. LXXXII/2746/2006.
  • [30] Warsaw City Council, (2018): Study of Conditions and Directions of Spatial Development of Capital City of Warsaw (in Polish), legal act no. LXII/1667/2018.
  • [31] Yuan C., Ng E., (2012): Building porosity for better urban ventilation in high-density cities – A computational parametric study, Building and Environment, Vol. 50, pp. 176–189.
  • [32] Zielonko-Jung K., (2010): Aerodynamic Phenomena and the Shaping of Buildings and Urban Spaces, Problemy Rozwoju Miast, Vol. 4(2010), pp. 43–54.
  • [33] Zielonko-Jung K., (2014): The densely developed urban space as an environment for energy-efficient buildings, Architectus, 2(38), pp. 49–58.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee376352-21b6-47dd-8493-82d39af386f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.