Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The recommended optimal twist angles were determined for particular sections of the prototype rotor blade dedicated to an unmanned helicopter. The main rotor blade was tested in the GUNT HM 170 tunnel for four different air flow velocities and variable angles of attack. The blade model was divided into sections, each of them was made in the 3D printing technology. For all the sections, the maximum lift and drag forces were determined and then converted to dimensionless values. The aerodynamic characteristics were calculated for each section and different air flow velocities in the wind tunnel. Due to the division of the blade into sections, it was possible to define the most favorable angles of attack along the rotor radius. Aerodynamic excellence was identified for each blade section and air flow velocities.
Wydawca
Rocznik
Tom
Strony
104--114
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
autor
- Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland
Bibliografia
- 1. Ajaj R.M., Beaverstock C.S., and Friswell M.I. Morphing aircraft: The need for a new design philosophy. Aerospace Science and Technology, 49, 2016, 154–166.
- 2. Barbarino S., Bilgen O., Ajaj R.M., Friswell M.I. and Inman D.J. A Review of Morphing Aircraft. Journal of Intelligent Material Systems and Structures, 22(9), 2011, 823–877.
- 3. Coutu D., Brailovski V., and Terriault P. Optimized design of an active extrados structure for an experimental morphing laminar wing. Aerospace Science and Technology, 14, 2010, 451–458.
- 4. Czyż Z., Siadkowska K., and Sochaczewski R. CFD Analysis of Charge Exchange in an Aircraft Opposed-Piston Diesel Engine. MATEC Web of Conferences, 252, Lublin, Poland 2019, 04002.
- 5. Daynes S. and Weaver P.M. A morphing trailing edge device for a wind turbine. Journal of Intelligent Material Systems and Structures, 23(6), 2012, 691–701.
- 6. Epps J.J. and Chopra I. In-flight tracking of helicopter rotor blades using shape memory alloy actuators. Smart Materials and Structures, 10(1), 2001.
- 7. Es-Souni M., Wassel E., Dietze M., Laghrissi A., Klöhn F., Weyrich, T. and Es-Souni M. Processing of nanotubes on NiTi-shape memory alloys and their modification with photografted anti-adhesive polymer brushes. Towards smart implant surfaces. Materials and Design, 182, 2019, 108031.
- 8. Fincham J.H.S. and Friswell M.I. Aerodynamic optimisation of a camber morphing aerofoil. Aerospace Science and Technology, 43, 2015, 245–255.
- 9. Fortini A., Suman A., Merlin M. and Garagnani G.L. Morphing blades with embedded SMA strips: An experimental investigation. Materials and Design, 85, 2015, 785–795.
- 10. Grabowski Ł., Czyż Z. and Kruszczyński K. Numerical Analysis of Cooling Effects of a Cylinders in Aircraft SI Engine. SAE Technical Paper, 2014, 2014–01–2883.
- 11. Grabowski Ł., Siadkowska K. and Skiba K. Simulation Research of Aircraft Piston Engine Rotax 912. MATEC Web of Conferences, 252, Lublin, Poland 2019, 05007.
- 12. Hintz C., Torno C. and Garcia Carrillo L.R. Design and dynamic modeling of a rotary wing aircraft with morphing capabilities. Conference Proceedings of 2014 International Conference on Unmanned Aircraft Systems, USA, Orlando, 2014, 492–498.
- 13. HM 170 Open wind tunnel. https://www.gunt.de (accessed on 5 April 2020).
- 14. Keshmiri S., Kim A.R., Shukla D., Blevins A. and Ewing M. Flight Test Validation of Collision and Obstacle Avoidance in Fixed-Wing UASs with High Speeds Using Morphing Potential Field. Conference Proceedings of 2018 International Conference on Unmanned Aircraft Systems, USA, Dallas, 2018, 589–598.
- 15. Kessler C. Active rotor control for helicopters: Individual blade control and swashplateless rotor designs. CEAS Aeronautical Journal, 1, 2011, 23–54.
- 16. Kovalovs A., Barkanov E., Ruchevskis S. and Wesolowski M. Optimisation Methodology of a Full-scale Active Twist Rotor Blade. Procedia Engineering, 178, 2017, 85–95.
- 17. Lachenal X., Daynes S. and Weaver P.M. Review of morphing concepts and materials for wind turbine blade applications. Wind Energy, 16, 2013, 283–307.
- 18. Li B., Zhou W., Sun J., Wen C.Y. and Chen C.K. Development of model predictive controller for a tail-sitter VTOL UAV in hover flight. Sensors 18(9),2018, 1–21.
- 19. Ligęza P. ATU 08 Ośmiotorowy moduł stałotemperaturowo-stałoprądowy do pomiarów anemometryczno-termometrycznych. Instytut Mechaniki Górotworu PAN, 2009.
- 20. Mohd Jani J., Leary M., Subic A. and Gibson M.A. A review of shape memory alloy research, applications and opportunities. Materials and Design, 56, 2014, 1078–1113.
- 21. Niemi J.E. and Raghu Gowda B.V. Gyroplane Rotor Aerodynamics Revisited – Blade Flapping and RPM Variation in Zero-g Flight. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, USA, Orlando 2011.
- 22. Pastrikakis V.A., Steijl R. and Barakos G.N. Effect of Active Gurney Flaps on Overall Helicopter Flight Envelope. Aeronautical Journal, 120(1230), 2016, 1230–1261.
- 23. Pastrikakis V.A., Steijl R., Barakos G.N. and Małecki J. Computational aeroelastic analysis of a hovering W3 Sokol blade with gurney flap. Journal of Fluids and Structures, 53, 2015, 96–111.
- 24. Rodgers J., Hagood N., Weems D., Rodgers J., Hagood N. and Weems, D. Design and manufacture of an integral twist-actuated rotor blade. 38th Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 1997.
- 25. Saghaian S.M., Karaca H.E., Souri M., Turabi A.S. and Noebe R.D. Tensile shape memory behavior of Ni50.3Ti29.7Hf20 high temperature shape memory alloys. Materials and Design, 101, 2016, 340–345.
- 26. Shen J., Su Y., Liang Q. and Zhu X. Calculation and identification of the aerodynamic parameters for small-scaled fixed-wing UAVs. Sensors, 18(1), 2018, 1–18.
- 27. Siadkowska K., Wendeker M., Majczak A., Baranski G. and Szlachetka M. The Influence of Some Synthetic Fuels on the Performance and Emissions in a Wankel Engine. SAE Technical Papers, 2014, 2014–01–26.
- 28. Siadkowska K., Raczyński R. and Wendeker M. Numerical analysis of the rotor in the co-simulation methodology. IOP Conference Series: Materials Science and Engineering Paper, IV International Conference of Computational Methods in Engineering Science – CMES’19, Poland, Kazimierz Dolny, 2019, 710, 012009.
- 29. Skiba K. Designing and FEM simulation of the helicopter rotor and hub. IOP Conference Series: Materials Science and Engineering Paper, IV International Conference of Computational Methods in Engineering Science – CMES’19, Poland, Kazimierz Dolny, 2019, 710, 012003.
- 30. Sofla A.Y.N., Meguid S.A. Tan K.T. and Yeo W.K. Shape morphing of aircraft wing: Status and challenges. Materials and Design, 31, 2009, 1284–1292.
- 31. Surowska B. Functional and Hybrid Materials in Air Transport. Maintenance and Realibity, 3, 2008, 30–40.
- 32. Wilbur M.L., Mistry M.P., Lorber P.F., Blackwell R., Barbarino S., Lawrence T.H. and Arnold U.T.P. Rotary Wings Morphing Technologies: State of the Art and Perspectives. Morphing Wing Technologies, 2018, 759–797.
- 33. Wilbur M.L. and Wilkie W.K. Active-twist rotor control applications for UAVs. Transformational Science and Technology for the Current and Future Force, 2006, 185–192.
- 34. Yao X., Liu W., Han W., Li G. and Ma Q. Development of Response Surface Model of Endurance Time and Structural Parameter Optimization for a Tailsitter UAV. Sensors, 20(6), 2020, 1766.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee35762f-697c-495d-8603-ad786a98e9a0