PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radial mixing in horizontal aerated tubular reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses radial mixing in a Horizontal Aerated Tubular Reactor (HATR). The study aimed to experimentally investigate mixing in HATR by determining mixing time, liquid circulation time, and Peclet number values, which measure the ratio of advective to diffusive transport rates. The experimental setup included a transparent tube for observing fluid mixing and a color tracer was used for visualizing mixing. Mixing and circulation times were determined using non-intrusive optical method. The experimentally determined circulation time was in the range of 3÷6.5 s, and the mixing time was in the range of 5÷20 s. The results suggested that fluid flow structure in HATR was closer to plug flow rather than ideal mixing, as indicated by high Peclet numbers (20÷45).
Rocznik
Strony
87--96
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wz.
Twórcy
  • Faculty of Chemical Engineering and Technology, Cracow University of Technology, Poland
Bibliografia
  • 1. Šantek, B., Ivančić, M., Horvat, P., Novak, S. & Marić, V. (2006). Horizontal tubular bioreactors in biotechnology. Chem. Biochem. Engin. Quarterly, 20(4), 389–399. DOI: 10.15255/CABEQ.2014.445.
  • 2. Levenspiel, O. (2011). Tracer technology: modeling the flow of fluids (Vol. 96). New York, USA: Springer Sci. & Business Media.
  • 3. Moser, A. (1991). Tubular bioreactors: case study of bioreactor performance for industrial production and scientific research. Biotechnol. Bioengin., 37(11), 1054–1065. DOI: 10.1002/bit.260371111.
  • 4. Levenspiel, O. (2011). Chemical reaction engineering. New York, USA: John Wiley & Sons.
  • 5. Borchardt, J.A. (1971). Biological waste treatment using rotating discs. Biological Waste Treatment, 131–140.
  • 6. Gorbach, G. (1969). Die kontinuierliche Dünnschichtfermentation. Fette, Seifen, Anstrichmittel, 71(2), 98–103.
  • 7. Rossi, D., Gargiulo, L., Valitov, G., Gavriilidis, A. & Mazzei, L. (2017). Experimental characterization of axial dispersion in coiled flow inverters. Chem. Engin. Res. Design, 120, 159–170.
  • 8. Essadki, A.H., Gourich, B., Vial, C. & Delmas, H. (2011). Residence time distribution measurements in an external-loop airlift reactor: Study of the hydrodynamics of the liquid circulation induced by the hydrogen bubbles. Chem. Engin. Sci. 66(14), 3125–3132. DOI: 10.1016/j.ces.2011.02.063.
  • 9. Murakami, Y., Hirose, T., Ono, S. & Nishijima, T. (1982). Mixing properties in loop reactor. J. Chem. Engin. Japan, 15(2), 121–125. DOI: 10.1252/jcej.15.121.
  • 10. Verlaan, P., Van Eijs, A.M.M., Tramper, J., Van’t Riet, K. & Luyben, K.C.A. (1989). Estimation of axial dispersion in individual sections of an airlift-loop reactor. Chem. Engine. Sci. 44(5), 1139–1146. DOI: 10.1016/0009-2509(89)87013-7.
  • 11. Gavrilescu, M. & Tudose, R.Z. (1997). Mixing studies in external-loop airlift reactors. Chem. Engin. J. 66(2), 97–104. DOI: 10.1016/S1385-8947(96)03177-4.
  • 12. Prończuk, M. & Bizon, K. (2019). Investigation of the liquid mixing characteristic of an external-loop hybrid fluidized-bed airlift reactor. Chem. Engin. Sci. 210, 115231. DOI: 10.1016/j.ces.2019.115231.
  • 13. Khang, S.J. & Levenspiel, O. (1976). New scale-up and design method for stirrer agitated batch mixing vessels. Chem. Engin. Sci. 31(7), 569–577. DOI: 10.1016/0009-2509(76)80020-6.
  • 14. Sánchez Mirón, A., Cerón García, M.C., García Camacho, F., Molina Grima, E. & Chisti, Y. (2004). Mixing in bubble column and airlift reactors. Chem. Engin. Res. Design, 82(10), 1367–1374. DOI: 10.1205/cerd.82.10.1367.46742.
  • 15. Lechowska, J., Kordas, M., Konopacki, M., Fijałkowski, K., Drozd, R. & Rakoczy, R. (2019). Hydrodynamic studies in magnetically assisted external-loop airlift reactor. Chem. Engin. J. 362, 298–309. DOI: 10.1016/j.cej.2019.01.037.
  • 16. Onken, U. & Weiland, P. (1980). Hydrodynamics and mass transfer in an airlift loop fermentor. Europ. J. Appl. Microb. Biotech. 10, 31–40. DOI: 10.1007/BF00504725.
  • 17. Andersen, R. (2008). Modern methods for robust regression (No. 152). Sage.
  • 18. Taylor, J. (1997). Introduction to error analysis, the study of uncertainties in physical measurements (2nd ed.). Sausalito, California, USA: University Science Books.
  • 19. Chisti, M.Y., Halard, B. & Moo-Young, M. (1988). Liquid circulation in airlift reactors. Chem. Engin. Sci. 43(3), 451–457. DOI: 10.1016/0009-2509(88)87005-2.
  • 20. Gaddis, E.S. & Vogelpohl, A.J.C.E.S. (1986). Bubble formation in quiescent liquids under constant flow conditions. Chem. Engin. Sci. 41(1), 97–105.
  • 21. Blenke, H. (1979). Loop reactors. Adv. Biochem. Engin. vol 13, 121–214). DOI: 10.1007/3540094687_8.
  • 22. Chisti, Y. (1989). Airlift Bioreactors. New York, USA: Elsevier.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee32a591-6e1c-4546-afdc-cadbdb6dc9da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.