PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and experimental investigations on Mannesmann effect of nickel‑based superalloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The preparation of nickel-based superalloy tubes by rotary tube piercing (RTP) process is still difficult due to the Mannesmann effect (central cracking phenomenon) has not been clarified. The combinations of numerical analysis and experiment verifications method were adopted in the study. The critical parameters for central cracking were determined by experiments. It was found that the evolution process of central cracking for nickel-based superalloy includes voids nucleation, growth and aggregation. Based on the obtained critical parameters, the evolutions of stress, strain, strain rate, temperature and damage were discussed by numerical simulation. By comparing the experiment results and simulation results, the Normalized Cockcroft and Latham (NCL) model was determined as the most suitable model. Considering the influences of temperature and strain rate on the damage threshold, the NCL model of Inconel 718 alloy was established by high-temperature tensile test. Based on the above results, it is found that the maximum shear stress promotes the plastic deformation, which provides necessary conditions for the generation of defects, and the maximum principal stress induces the generation of voids and expansion of micro-cracks, which directly leads to the central cracking. The essence of central cracking is ductile fracture under tensile stress.
Rocznik
Strony
art. no. e133
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
  • School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Bibliografia
  • 1. Adb A, Stn A, Isj B, Db C, As A. Future research directions in the machining of Inconel 718. J Mater Process Technol. 2021;297: 117260.
  • 2. Zhu XL, Liu D, Xing LJ, Hu Y, Yang YH. Microstructure evolution of Inconel 718 alloy during ring rolling process. Int J Precis Eng Manuf. 2016;17:775-83.
  • 3. Romantsev B, Goncharuk A, Aleshchenko A, Gamin Y, Mintakhanov M. Development of multipass skew rolling technology for stainless steel and alloy pipes’ production. Int J Adv Manuf Technol. 2018;97:3223-30.
  • 4. Ding X, Shuang Y, Liu Q, Zhao C. New rotary piercing process for an AZ31 magnesium alloy seamless tube. Mater Sci Technol. 2017;0836:1-11.
  • 5. Zhang Z, Liu D, Yang Y, Zheng Y, Pang Y, Wang J, Wang H. Explorative study of rotary tube piercing process for producing titanium alloy thick-walled tubes with bi-modal microstructure. Arch Civ Mech Eng. 2018;18:1451-63.
  • 6. Pschera R, Klarner J, Sommitsch C. Modelling the forming limit during cross-rolling of seamless pipes using a modified continuum damage mechanics approach. Steel Res Int. 2010;81:686-90.
  • 7. Mori KI, Yoshimura H, Osakada K. Simplified three-dimensional simulation of rotary piercing of seamless pipe by rigid-plastic finite-element method. J Mater Process Technol. 1998;80-81:700-6.
  • 8. Ceretti E, Giardini C, Brisotto F, Ghosh S, Castro JC, Lee JK. 2D Simulation and validation of rotary tube piercing process. AIP Conf Proc. 2004;712:1154.
  • 9. Li SZ, Xu J, Duan XG, Zheng JM, Xue JG, Pan F. Improved FE modeling of center crack occurrence in tube rounds during two-roll rotary rolling process. Mater Sci Forum. 2007;561-565:1895-8.
  • 10. Ghiotti A, Fanini S, Bruschi S, Bariani PF. Modelling of the Mannesmann effect. CIRP Ann Manuf Technol. 2009;58:255-8.
  • 11. Pater AZ, Tomczak AJ, Bulzak AT, Wojcik AŁ, Skripalenko B, Mikhailovich M. Prediction of ductile fracture in skew rolling processes. Int J Mach Tools Manuf. 2021;163:103706.
  • 12. Pater Z, Tomczak J, Bulzak T. Rotary compression as a new calibration test for prediction of a critical damage value. J Mater Res Technol. 2020;9:5487-98.
  • 13. Yamane K, Shimoda K, Kuroda K, Kajikawa S, Kuboki T. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number of rolls. J Mater Process Technol. 2020;291: 116989.
  • 14. Chen XM, Lin YC, Wen DX, Zhang JL, He M. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des. 2014;57:568-77.
  • 15. Zhang Z, Liu D, Zhang R, Yang Y, Pang Y, Wang J, Wang H. Experimental and numerical analysis of rotary tube piercing process for producing thick-walled tubes of nickel-base superalloy. J Mater Process Technol. 2020;279: 116557.
  • 16. Sun S, Teng Q, Xie Y, Liu T, Ma R, Bai J, Cai C, Wei Q. Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility. Addit Manuf. 2021;46: 102168.
  • 17. Freudenthal AM. The inelastic behavior of engineering materials and structures. New York: Wiley; 1950.
  • 18. Cockcroft MG, Latham DJ. Ductility and workability of metals. J Inst Met. 1968;96:33-9.
  • 19. Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits in metal sheets. In: Proc. 7th Bienn. conf. IDDR, 1972.
  • 20. Oh SI, Chen CC, Kopbayashi S. Ductile fracture in axisymmetric extrusion and wire drawing-part 2: workability in extrusion and drawing. J Eng Ind. 1979;101:23-35.
  • 21. Ayada MK-I, Higashino T. Central bursting in extrusion of inhomogeneous materials. Adv Technol Plast. 1987;1:553-8.
  • 22. Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids. 1969;17:201-17.
  • 23. Roy GL, Embury JD, Edwards G, Ashby MF. A model of ductile fracture based on the nucleation and growth of voids. Acta Metall. 1981;29:1509-22.
  • 24. Zhang Z, Liu D, Yang Y, Wang J, Zheng Y, Zhang F. Microstructure evolution of nickel-based superalloy with periodic thermal parameters during rotary tube piercing process. Int J Adv Manuf Technol. 2019;104:3991-4006.
  • 25. Ganjiani M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle. Eur J Mech A/Solids. 2020;84: 104048.
  • 26. Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast. 2008;24:1071-96.
  • 27. Gao X. A study on the effect of the stress state on ductile fracture. Int J Damage Mech. 2010;19:75-94.
  • 28. Lou Y, Yoon JW, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast. 2014;54:56-80.
  • 29. Samantaray D, Mandal S, Bhaduri AK. Characterization of deformation instability in modified 9Cr-1Mo steel during thermo-mechanical processing. Mater Des. 2011;32:716-22.
  • 30. Vysochinskiy D, Coudert T, Hopperstad OS, Lademo O-G, Reyes A. Experimental detection of forming limit strains on samples with multiple local necks. J Mater Process Technol. 2016;227:216-26.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee31808a-0ee4-4fd1-bbe7-83a2b2e52582
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.