PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SARS-CoV-2 - the origin and spread in the human population - Part 1. The origin and spread of SARS-CoV-2

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: This paper contains an overview of information related to the origin of the SARS-CoV-2 virus, its characteristics, including mutational variability, and monitoring the virus's presence in the human population. Methods: A review of medical and biological literature from the PubMed/MEDLINE databases from 1998 to 2024 was performed regarding research on SARS viruses, particularly SARS-CoV-2. Results and conclusions: At the end of 2019, cases of a new virus were recorded in China, which within a few months, as a result of free population migration, was transferred to various regions in the world. In the first quarter of 2020, the World Health Organization announced the SARS-CoV-2 pandemic. In addition to the characteristics of coronaviruses, headed by the SARS-CoV-2 virus, this manuscript contains several threads to provoke discussion, especially concerning the ethical aspects of “gain of function” research, which make pathogens more contagious, dangerous and lethal to humans. Attention is also paid to the essence of reliable work and documentation of scientific work.
Słowa kluczowe
Rocznik
Strony
62--69
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Department of Bioinformatics and Telemedicine, Faculty of Medicine, Jagiellonian University Medical College; Kopernika Str. 7e, 31-034 Kraków, Poland
  • Department of Bioinformatics and Telemedicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
autor
  • Medicare Clinic, Reading, United Kingdom
Bibliografia
  • 1. Graham RL, Donaldson EF, Baric RS. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat Rev Microbiol. 2013;11:836-48.
  • 2. Mäkelä MJ, Puhakka T, Ruuskanen O, Leinonen M, Saikku P, Kimpimäki M, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol. 1998 Feb 1;36(2):539-42.
  • 3. Patterson KD, Pyle GF. The geography and mortality of the 1918 influenza pandemic. Bull Hist Med. 1991;65(1):4-21.
  • 4. MacCallum WG. Pathology of the pneumonia following influenza. J Am Med Assoc. 1919 Mar 8;72(10):720.
  • 5. Lifescience.com [Internet]. 20 of the worst epidemics and pandemics in history - Live Science; [cited 2021 Jan 31]. Available from: https://www.livescience.com/worst-epidemics-and-pandemics-in-history.html.
  • 6. World Health Organization. WHO checklist for influenza pandemic preparedness planning. Epidemic Alert & Response. 2005;1-39.
  • 7. Doshi P. The elusive definition of pandemic influenza. Bull World Health Organ. 2011;89(7):532-8.
  • 8. www.who.int [Internet]. WHO – What is a pandemic?; [cited 2021 Jan 31]. Available from: https://www.who.int/csr/disease/swineflu/frequently_asked_questions/pandemic/en/.
  • 9. https://www.ncbi.nlm.nih.gov [Internet]. Home - SRA - NCBI; [cited 2021 Mar 17]. Available from: https://www.ncbi.nlm.nih.gov/sra.
  • 10. NCBI term=covid-19 [Internet]. NCBI/Pubmed/Covid19; [cited 2021 Mar 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=covid-19.
  • 11. ClinicalTrials.gov [Internet]. Search of: COVID-19 - List Results - ClinicalTrials.gov; [cited 2021 Mar 17]. Available from: https://clinicaltrials. gov/ct2/results?cond=COVID-19.
  • 12. Mandeville KL, O’Neill S, Brighouse A, Walker A, Yarrow K, Chan K. Academics and competing interests in H1N1 influenza media reporting. J Epidemiol Community Health (1978). 2014 Mar 1;68(3):197-203.
  • 13. Wiesendanger R, editors. Studie zum Ursprung der Coronavirus-Pandemie [Internet]. Hamburg: University of Hamburg; 2021 [cited 2021]. Available from: https://online.fliphtml5.com/qydua/wwrx/#p=1.
  • 14. Menachery VD, Yount BL, Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015 Dec 1;21(12):1508-13.
  • 15. Menachery VD, Yount BL, Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. Erratum: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 2015;22:446. doi: https://www.doi.org/10.1038/nm.3985.
  • 16. Zhou P, Lou YX, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar 12;579(7798):270-3.
  • 17. Zhou P, Han Z, Wang LF, Shi Z. Identification of immunogenic determinants of the spike protein of SARS-like coronavirus. Virol Sin. 2013 Apr;28(2):92-6.
  • 18. Zeng LP, Gao YT, Ge XY, Zhang Q, Peng C, Yang XL, et al. Bat severe acute tespiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response. J Virol. 2016 Jul 15;90(14):6573-82.
  • 19. Alexander LK, Keene BW, Baric RS. Echocardiographic changes following rabbit coronavirus infection. In: Dong H, Rezaei N, Steinlein O, Xiao J, Rosenhouse-Dantsker A, Gerlai R, editors. Advances in Experimental Medicine and Biology. New York: Springer LLC; 1995. p. 113-5.
  • 20. Hensley LE, Holmes KV, Beauchemin N, Baric RS. Virus-receptor interactions and interspecies transfer of a mouse hepatitis virus. Adv Exp Med Biol. 1998;440:33-41.
  • 21. Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J. Pathol. 2015 Jan 1;235(2):185-95.
  • 22. Zohaib A, Saqib M, Athar MA, Chen J, Sial Aur R, Khan S, et al. Countrywide Survey for MERS-coronavirus antibodies in dromedaries and humans in Pakistan. Virol Sin. 2018 Oct 1;33(5):410-7.
  • 23. Zeng LP, Ge XY, Peng C, Tai W, Jiang S, Du L, et al. Cross-neutralization of SARS coronavirus-specific antibodies against bat SARS-like coronaviruses. Sci. China Life Sci. 2017;60:1399-402.
  • 24. Hu B, Zeng LP, Lou YX, Ge XY, Zhang W, Li B, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017 Nov 1;13(11):e1006698.
  • 25. Ren W, Qu X, Li W, Han Z, Yu M, Zhou P, et al. Difference in receptor usage between Severe Acute Respiratory Syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J Virol. 2008 Feb 15;82(4):1899-907.
  • 26. Zhou P, Han Z, Wang LF, Shi Z. Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins. Biochem Biophys Res Commun. 2009 Sep 18;387(2):326-9.
  • 27. Bai B, Hu Q, Hu H, Zhou P, Shi Z, Meng J et al. Virus-like particles of SARS-like coronavirus formed by membrane proteins from different origins demonstrate stimulating activity in human dendritic cells. PLoS One. 2008 Jul 16;3(7):e2685.
  • 28. Burki T. The origin of SARS-CoV-2. Lancet Infect Dis. 2020 Sep 1;20(9):1018-9.
  • 29. Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019 Jan 9;11(1):41.
  • 30. Xiao X, Newman C, Buesching CD, Macdonald DW, Zhou ZM. Animal sales from Wuhan wet markets immediately prior to the COVID-19 pandemic. Sci Rep. 2021 Jun 7;11(1):11898.
  • 31. https://apps.who.int/ [Internet]. World Health Organization. 2020. Origin of SARS-CoV-2; [cited 2021 Mar 16]. Available from: https://apps.who.int/iris/bitstream/handle/10665/332197/WHO-2019-nCoV-FAQ-Virus_origin-2020.1-eng.pdf.
  • 32. Fernández A. Molecular biology clues portray SARS-CoV-2 as a gain-of-function laboratory manipulation of bat CoV RaTG13. ACS Med Chem Lett. 2021;12(6):941-2.
  • 33. https://www.flickr.com/ [Internet]. Mokhtar M. flickr. 2020. Novel Coronavirus SARS-CoV-2 |Colorized scanning electron; [cited 2021 Mar 16]. Available from: https://www.flickr.com/photos/niaid/49679608341/in/album-72157712914621487/.
  • 34. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26:450-2.
  • 35. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016 Jun;24(6):490-502.
  • 36. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019 Mar;17(3):181-92.
  • 37. Callaway E. The coronavirus is mutating - Does it matter? Nature 2020;585 (7824):174-7.
  • 38. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar 12;579(7798):265-9.
  • 39. Hatcher EL, Zhdanov SA, Bao Y, Blinkova O, Nawrocki EP, Ostapchuck Y, et al. Virus Variation Resource-improved response to emergent viral outbreaks. Nucleic Acids Res. 2017 Jan 1;45(D1): D482-90.
  • 40. https://www.ncbi.nlm.nih.gov [Internet]. National Library of Medicine. 2021. Mutations in SARS-CoV-2 SRA Data; [cited 2021 Mar 1]. Available from: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/scov2_snp.
  • 41. https://macman123.shinyapps.io [Internet]. SARS-CoV-2 Alignment Screen; [cited 2021 Mar 1]. Available from: https://macman123.shinyapps.io/ugi-scov2-alignment-screen/.
  • 42. Duprex WP, Fouchier RAM, Imperiale MJ, Lipsitch M, Relman DA. Gain-of-function experiments: Time for a real debate. Nat Rev Microbiol. 2015 Jan;13(1):58-64.
  • 43. Bookshelf N, editors. Gain-of-function research: Background and alternatives – potential risks and benefits of gain-of-function research - NCBI Bookshelf [Internet]. Washington: National Academy Press; 2021 [cited 2021 Jan 9]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK285579/.
  • 44. Imperiale MJ, Casadevall A. Rethinking gain-of-function experiments in the context of the COVID-19 pandemic. mBio. 2020 Aug 7;11(4):e01868-20.
  • 45. https://usrtk.org/ [Internet]. U.S. Right to Know. Why we are researching the origins of SARS-CoV-2, biosafety labs and GOF research - U.S. Right to Know. 2020; [cited 2021 Jan 16]. Available from: https://usrtk. org/biohazards/why-we-are-researching-the-origins-of-sars-cov-2-biosafety-labs-and-gof-research/.
  • 46. https://www.gisaid.org/ [Internet]. EVF von G. GISAID - Initiative. 2021; [cited 2021 Mar 17]. Available from: https://www.gisaid.org/.
  • 47. Casadevall A, Imperiale M. Risks and benefits of gain-of-function experiments with pathogens of pandemic potential, such as influenza virus: A call for a science-based discussion. mBio. 2014;5(4):e01730-14.
  • 48. Casadevall A, Shenk T. MBIO addresses the pause in gain-of-function (GOF) experiments involving pathogens with pandemic potential (PPP). mBio. 2014 Dec 12;5(6):e02434-14.
  • 49. Fears R, ter Meulen V. European academies advise on gain-of-function studies in influenza virus research. J Virol. 2016 Mar 1;90(5):2162-4.
  • 50. Macintyre CR, Adam DC, Turner R, Chughtai AA, Engells T. Public awareness, acceptability and risk perception about infectious diseases dual-use research of concern: A cross-sectional survey. BMJ Open. 2020 Jan 6;10(1):e029134.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee2ee4b4-1edf-4613-ba6b-68537338095b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.