Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The paper compares heating curves for a rectangular busbar in the conditions of convective and adiabatic heat transfer during short-circuit heating. Different coefficients of heat transfer from the external surface of the busbar and different busbar cross-sections have been assumed. This has allowed determining the error value occurring when the adiabatic rather than convective boundary condition is presumed at short circuit. The analysis takes into account a change of resistivity in the temperature function. The respective boundary-initial problems have been solved with analytical methods using Green’s function. The calculated results show that no considerable errors occur for long-lasting short circuits with an adiabatic rather than convective boundary condition.
Rocznik
Tom
Strony
79--85
Opis fizyczny
Bibliogr. 18 poz., rys., wykr., tab.
Twórcy
autor
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska St., 15-351 Bialystok, Poland
Bibliografia
- [1] S. Kulas, Current Ducts and Contact Systems, Warsaw University of Technology Publishing House, Warsaw, 2008, [in Polish].
- [2] H. Markiewicz, Electric Power Devices, WNT, Warsaw, 2016, [in Polish].
- [3] J. Maksymiuk and Z. Pochanke, Computation and Diagnostic Investigations of Power Distributing Apparatus, WNT, Warsaw, 2001, [in Polish].
- [4] K.D. Cole, A. Haji-Sheikh, J.V. Beck, and B. Litkouhi, Heat Conduction Using Green’s Functions, CRC Press, 2011.
- [5] D.G. Duffy, Green’s Function with Applications, CRC Press, 2015.
- [6] M.D. Greenberg, Applications of Green’s Function in Science and Engineering, Dover Publications, USA, 2015.
- [7] K. Gnidzinska, G. de Mey, and A. Napieralski, “Heat dissipation and temperature distribution in long interconnect lines”, Bull. Pol. Ac.: Tech. 58 (1), 119‒124, (2010).
- [8] G.J. Anders, Rating of Electric Power Cables: Ampacity Computations for Transmission, Distribution, and Industrial Applications, McGraw-Hill Professional, New York, 1997.
- [9] N.W. Ashcroft and N.D. Mermin, Solid State Physics, Holt-Saunders International Editions, Japan, 1981.
- [10] M.J. Latif, Heat Conduction, Springer-Verlag, Haidelberg, 2009.
- [11] M.D. Baehr and K. Stephan, Heat and Mass Transfer, Springer-Verlag, Heidelberg, 2006.
- [12] D.W. Hahn and M.N. Ozisik, Heat Conduction, John Wiley & Sons, New Jersey, 2012.
- [13] A. Brykalski, “Ein Beitrag zur Bestimmung der mittleren Zeitkonstante von Diffusionsprozessen”, International Journal of Heat and Mass Transfer 28 (3), 13‒620 (1985).
- [14] W. Lipiński and J. Golębiowski, “Modeling of electromagnetic shield dynamics”, IEEE Transactions on Magnetics 16 (6), 1419‒1422 (1986).
- [15] P. Wellin, Essentials of Programming in Mathematica, Cambridge University Press, UK, 2014.
- [16] Wolfram Research, Inc., Mathematica, Version 10.4, Champaign, IL, 2016.
- [17] S. Brenner and R.L. Scott, The Mathematical Theory of Finite Element Methods, Springer, Berlin, 2008.
- [18] K.J. Bathe, Finite-Elemente Methoden, Springer-Verlag, Berlin, 1990.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee2de2d4-153d-4d95-bacd-715d708050c7