Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Model and Data Engineering, MEDI 2016 (6; 21-23. 09.2016; Almera, Spain)
Języki publikacji
Abstrakty
Classically, Data Warehouses (DWs) supports business analyses on data coming from the inside of an organization. Nevertheless, Lined Open Data(LOD) might sensibly complete these business analyses by providing complementary perspectives during a decision-making process. In this paper, we propose a conceptual modeling solution, named Unified Cube, which blends together multidimensional data from DWs and LOD datasets without materializing them in a stationary repository. We complete the conceptual modeling with an implementation framework which manages the relations between a Unified Cube and multiple data sources at both schema and instance levels. We also propose an analysis processing process which queries different sources in a transparent way to decision-makers. The practical value of our proposal is illustrated through real-world data and benchmarks.
Wydawca
Czasopismo
Rocznik
Tom
Strony
311--359
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
- Université Toulouse I Capitole, 2 Rue du Doyen Gabriel Marty F-31042, Toulouse Cedex 09, France
autor
- Université Toulouse I Capitole, 2 Rue du Doyen Gabriel Marty F-31042 Toulouse Cedex 09, France
Bibliografia
- [1] Abelló A, Darmont J, Etcheverry L, Golfarelli, M., Mazón, J.-N., Naumann, F., Pedersen, T., Rizzi, S. B., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion Cubes: Towards Self-Service Business Intelligence, International Journal of Data Warehousing and Mining, 2013;9(2):66-88. ISSN:1548-3924, 1548-3932.
- [2] Abelló A, Romero O, Pedersen TB, Berlanga R, Nebot V, Aramburu MJ, Simitsis A. Using Semantic Web Technologies for Exploratory OLAP: A Survey, IEEE Transactions on Knowledge and Data Engineering, 2015;27(2):571-588. ISSN:1041-4347.
- [3] Abiteboul S, Manolescu I, Rigaux P, Rousset MC, Senellart P. Web data management, Cambridge University Press, 2011, ISBN:1-139-50505-X.
- [4] Baldacci L, Golfarelli M, Graziani S, Rizzi S. QETL: An approach to on-demand ETL from non-owned data sources, Data & Knowledge Engineering, 2017;112:17-37. URL https://doi.org/10.1016/j.datak.2017.09.002.
- [5] Bhattacharya I, Getoor L. Collective Entity Resolution in Relational Data, ACM Transactions on Knowledge Discovery from Data, 2006;1(1):5-44, ISSN:15564681. doi:10.1145/1217299.1217304.
- [6] Boussaid O, Darmont J, Bentayeb F, Loudcher S. Warehousing Complex Data from the Web, International Journal of Web Engineering and Technology, 2008;4(4):408-433. ISSN:1476-1289. doi:10.1504/IJWET.2008.019942.
- [7] Brizan DG, Tansel AU. A Survey of Entity Resolution and Record Linkage Methodologies, Communications of the IIMA, 2006;6(3):5-15.
- [8] Castano S, Ferrara A, Montanelli S, Varese G. Ontology and Instance Matching, in: Knowledge-Driven Multimedia Information Extraction and Ontology Evolution, vol. 6050, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011 pp. 167-195. ISBN:978-3-642-20794-5 978-3-642-20795-2.
- [9] Chaudhuri S, Dayal U, Narasayya V. An Overview of Business Intelligence Technology, Communications of the ACM, 2011;54(8):88-98, ISSN:00010782. doi:10.1145/1978542.1978562.
- [10] Cheatham M, Hitzler P. String Similarity Metrics for Ontology Alignment, in: The Semantic Web ISWC 2013, vol. 8219, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013 pp. 294-309. ISBN:978-3-642-41337-7.
- [11] Christian P. Soundex-can It Be Improved?, Computers in Genealogy, 1998;6:215-221. http://www.essex.ac.uk/AMS/articles/Soundex.html.
- [12] Christophides V, Efthymiou V, Stefanidis K. Entity Resolution in the Web of Data, Synthesis Lectures on the Semantic Web: Theory and Technology, 2015;5(3):1-122, ISSN:2160-4711, 2160-472X. URL https://doi.org/10.2200/S00655ED1V01Y201507WBE013.
- [13] Cohen W, Ravikumar P, Fienberg S. A Comparison of String Metrics for Matching Names and Records, Kdd workshop on data cleaning and object consolidation, 3, 2003.
- [14] Curino C, Moon HJ, Deutsch A, Zaniolo C. Automating the Database Schema Evolution Process, The VLDB Journal, 2013;22(1):73-98, ISSN:1066-8888. doi:10.1007/s00778-012-0302-x.
- [15] Deb Nath RP, Hose K, Pedersen TB. Towards a Programmable Semantic Extract-Transform-Load Framework for Semantic Data Warehouses, ACM Press, 2015, ISBN:978-1-4503-3785-4. doi:10.1145/2811222.2811229.
- [16] Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E. Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures, Proceedings of the VLDB Endowment, 2008;1(2):1542-1552, ISSN:2150-8097. doi:10.14778/1454159.1454226.
- [17] Etcheverry L, Vaisman A, Zimányi E. Modeling and Querying Data Warehouses on the Semantic Web Using QB4OLAP, in: Data Warehousing and Knowledge Discovery, vol. 8646, Springer International Publishing, Cham, 2014 pp. 45-56. ISBN:978-3-319-10160-6.
- [18] Euzenat J. Ontology matching, 2nd edition edition, Springer, New York, 2013, ISBN:978-3-642-38721-0.
- [19] Getoor L, Machanavajjhala A. Entity Resolution: Theory, Practice & Open Challenges, Proceedings of the VLDB Endowment, 2012;5(12):2018-2019. ISSN:21508097.
- [20] Ghawi R, Cullot N. Database-to-ontology mapping generation for semantic interoperability, Third International Workshop on Database Interoperability (InterDB 2007), 91, 2007.
- [21] Golfarelli M, Maio D, Rizzi S. Conceptual Design of Data Warehouses from E/R Schemes, Thirty-First Annual Hawaii International Conference on System Sciences, 7, IEEE Computer Society, Kohala Coast, HI, 1998, ISBN:978-0-8186-8255-1.
- [22] Gusfield D, Irving RW. The Stable Marriage Problem: Structure and Algorithms, Foundations of Computing, MIT Press, Cambridge, Mass, 1989, ISBN:978-0-262-07118-5.
- [23] Haase P, van Harmelen F, Huang, Z, Stuckenschmidt, H, Sure, Y.: A Framework for Handling Inconsistency in Changing Ontologies, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005 pp. 353-367. ISBN:978-3-540-32082-1.
- [24] Ibragimov D, Hose K, Pedersen TB, Zimányi E. Towards Exploratory OLAP over Linked Open DataA Case Study, Hang Zhou, 2014. doi:10.1007/978-3-662-46839-5_8.
- [25] Kämpgen B, Harth A. Transforming Statistical Linked Data for Use in OLAP systems, Proceedings of the 7th international conference on Semantic systems, ACM Press, Graz, Austria, 2011, ISBN:978-1-4503-0621-8.
- [26] Kämpgen B, ORiain S, Harth A. Interacting with Statistical Linked Data via OLAP Operations, The Semantic Web: ESWC 2012 Satellite Events: ESWC 2012 Satellite Events, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 pp.87-101. ISBN:978-3-662-46641-4. doi:10.1007/978-3-662-46641-4_7.
- [27] Koudas N, Marathe A, Srivastava D. Flexible String Matching Against Large Databases in Practice, in: Proceedings 2004 VLDB Conference, Elsevier, 2004 pp. 1078-1086. ISBN:978-0-12-088469-8.
- [28] Matei A, Chao KM, Godwin N. OLAP for Multidimensional Semantic Web Databases, in: Enabling Real-Time Business Intelligence, vol. 206, Springer Berlin Heidelberg, 2015 pp. 81-96. doi:10.1007/978-3-662-46839-5_6.
- [29] Nebot V, Berlanga R, Pérez JM, Aramburu MJ, Pedersen TB. Multidimensional Integrated Ontologies: A Framework for Designing Semantic Data Warehouses, in: Journal on Data Semantics XIII, vol. 5530, Springer Berlin Heidelberg, 2009 pp. 1-36. doi:10.1007/978-3-642-03098-7_1.
- [30] Pearson WR. Searching Protein Sequence Libraries: Comparison of the Sensitivity and Selectivity of the Smith-Waterman and FASTA Algorithms, Genomics, 1991;11(3):635-650, ISSN:08887543.
- [31] Pietriga E, Bizer C, Karger D, Lee R. Fresnel: A Browser-Independent Presentation Vocabulary for RDF, in: The Semantic Web - ISWC 2006, vol. 4273, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006 pp. 158-171, ISBN:978-3-540-49029-6 978-3-540-49055-5.
- [32] Ravat F, Song J. Unifying Warehoused Data with Linked Open Data: A Conceptual Modeling Solution, Model and Data Engineering (MEDI 2016), 9893, Springer International Publishing, Almeria, Spain, September 2016 pp. 245-259. doi:10.1007/978-3-319-45547-1_20.
- [33] Ravat F, Song J, Teste O. Designing Multidimensional Cubes from Warehoused Data and Linked Open Data, 2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS 2016), IEEE, Grenoble, France, 2016, ISBN:978-1-4799-8710-8. URL http://dx.doi.org/10.1109/RCIS.2016.7549337.
- [34] Ravat F, Song J, Teste O. OLAP Analysis Operators for Multi-state Data Warehouses, International Journal of Data Warehousing and Mining, 2016;12(4):54-74, ISSN:1548-3924, 1548-3932. doi:10.4018/IJDWM.2016100102.
- [35] Ravat F, Teste O, Tournier R, Zurfluh G. Algebraic and Graphic Languages for OLAP Manipulations, International Journal of Data Warehousing and Mining, 2008;4(1):17-46. URL http://www.igi-global.com.
- [36] Romero O, Abelló A. Automating Multidimensional Design from Ontologies, international workshop on Data warehousing and OLAP, ACM Press, 2007. doi:10.1145/1317331.1317333.
- [37] Saad R, Teste O, Trojahn C. OLAP Manipulations on RDF Data following a Constellation Model, Proceedings of International Workshop on Semantic Statistics (SemStats 2013) collocated with International Semantic Web Conference (ISWC-2013), Sydney, 2013.
- [38] Salem R, Boussaïd O, Darmont J. Active XML-based Web data integration, Information Systems Frontiers, 2013;15(3):371-398, ISSN:1572-9419. doi:10.1007/s10796-012-9405-6.
- [39] Trujillo J, Maté A. Business Intelligence 2.0: A General Overview, in: Business Intelligence, vol. 96, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012 pp. 98-116. doi:10.1007/978-3-642-27358-2_5.
- [40] Ukkonen E. Approximate String-matching with q-grams and Maximal Matches, Theoretical computer science, 1992;92(1):191-211. ISSN:0304-3975. doi:10.1016/0304-3975(92)90143-4.
- [41] Waas F, Wrembel R, Freudenreich T, Thiele M, Koncilia C, Furtado P. On-Demand ELT Architecture for Right-Time BI: Extending the Vision, International Journal of Data Warehousing and Mining, 2013;9(2):21-38. ISSN:1548-3924, 1548-3932. doi:10.4018/jdwm.2013040102.
- [42] Wang P, Wu B, Wang B. TSMH Graph Cube: A novel framework for large scale multi-dimensional network analysis, IEEE, 2015. ISBN:978-1-4673-8272-4. doi:10.1109/DSAA.2015.7344826.
- [43] Wilder-James E. Breaking Down Data Silos, Harvard Business Review, 2016.
- [44] Yujian L, Bo L. A Normalized Levenshtein Distance Metric, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007;29(6):1091-1095, ISSN 0162-8828. doi:10.1109/TPAMI.2007.1078.
- [45] Zorrilla ME, Mazón JN, Ferrández O, Garrigós I, Daniel F, Trujillo J. Eds. Business Intelligence Applications and the Web: Models, Systems and Technologies, IGI Global, 2012, ISBN:978-1-61350-038-5 978-1-61350-039-2.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee2c3fd5-b9af-4e16-bc67-1b77d3a3c18f