Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays the demand for renewable energy sources is constantly growing. There are several reasons of such state, including requirements for energy-efficient new buildings and reduction of greenhouse gas emissions. An exemplary solution that may help to reduce “traditional” primary energy consumption is local energy source utilization. The article presents a simplified feasibility study of hybrid energy system under Polish law and economic conditions for a self-government unit, that is legally obliged to apply means of energy efficiency improvement. The aim of this paper is to provide a simple algorithm to find optimal hybrid PV and wind power source sizing for a prosumer. Resource data used in analyses are imported from Photovoltaic Geographical Information System and cover a period of one year. The paper includes two different methodologies applied to solve the problem of optimal hybrid energy system sizing. The first approach is heuristic and based on monthly energy balancing while the second is iterative and takes into account hourly energy balance. The results from both methods are compared and verified by HomerPro software, that shows significant differences between two algorithms. At the end economic assessment based on Net Present Value method is performed.
Rocznik
Tom
Strony
721--731
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Electrical Power Engineering Institute, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, Electrical Power Engineering Institute, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, Electrical Power Engineering Institute, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, Electrical Power Engineering Institute, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
- [1] J. Paska, Distributed energy sources, Publishing House of Warsaw University of Technology, Warsaw, 2017 [in Polish].
- [2] J. Paska, M. Kłos, and P. Biczel, “Hybrid power systems – an effective way of utilising primary energy sources”, Renewable Energy 34, 2414–2421 (2009).
- [3] Y. Sawle, S. Gupta, and A.K. Bohre, “Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system”, Renewable and Sustainable Energy Reviews 81, 2217–2235 (2018).
- [4] V. Khare, S. Nema, and P. Baredar, “Solar–wind hybrid renewable energy system: A review”, Renewable and Sustainable Energy Reviews 58, 23–33 (2016).
- [5] L. Bartolucci, S. Cordiner, V. Mulone, V. Rocco, and J.L. Rossi, “Hybrid renewable energy systems for renewable integration in microgrids: Influence of sizing on performance”, Energy 152, 744–758 (2018).
- [6] M.D. Al-Falahi, S. Jayasinghe, and H. Enshaei, “A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system”, Energy Conversion and Management 143, 252–274 (2017).
- [7] J. Lian, Y. Zhang, C. Ma, Y. Yang, and E. Chaima, “A review on recent sizing methodologies of hybrid renewable energy systems”, Energy Conversion and Management 199, 112027 (2019).
- [8] K. Anoune, M. Bouya, A. Astito, and A.B. Abdellah, “Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review”, Renewable and Sustainable Energy Reviews 93, 652–673 (2018).
- [9] J. Kartite and M. Cherkaoui, “Study of the different structures of hybrid systems in renewable energies: A review”, Energy Procedia 157, 323–330 (2019).
- [10] J. Jurasz and J. Mikulik, “Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective”, Bull. Pol. Ac.: Tech. 65 (6), 859–869 (2017).
- [11] European Parliament Think Tank, “Climate and energy policies in Poland”, http://www.europarl.europa.eu/thinktank/en/document.html?reference=IPOL_BRI(2017)607335, 2017.
- [12] Directive (EU) 2009/28 of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources, EUR-Lex Portal, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028.
- [13] Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources, EUR-Lex Portal, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32018L2001
- [14] Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency, EUR-Lex Portal, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32018L2002.
- [15] Act on renewable energy sources, L.J. of 2015, item 478, http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150000478 [in Polish].
- [16] J. Kuchmacz and L. Mika, “Description of development of prosumer energy sector in Poland”, Polityka Energetyczna – Energy Policy Journal 21 (4), 5–20 (2018).
- [17] Act on energy efficiency, L.J. of 2016, item 831, http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160000831 [in Polish].
- [18] Act on electromobility and alternative fuels, L.J. of 2018, item 317, http://prawo. sejm. gov. pl/ isap.nsf/ DocDetails.xsp?id=WDU20180000317 [in Polish].
- [19] J. Kiciński, “Do we have a chance for small-scale energy generation? The examples of technologies and devices for distributed energy systems in micro & small scale in Poland”, Bull. Pol. Ac.: Tech. 61 (4), 749–756 (2013).
- [20] A.S.A. Busaidi, H.A. Kazem, A.H. Al-Badi, and M.F. Khan, “A review of optimum sizing of hybrid PV–Wind renewable energy systems in Oman”, Renewable and Sustainable Energy Reviews 53, 185–193 (2016).
- [21] A. Maleki, and F. Pourfayaz, “Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms”, Solar Energy 115, 471–483 (2015).
- [22] S. Zahraee, M.K. Assadi, and R. Saidur, “Application of artificial intelligence methods for hybrid energy system optimization”, Renewable and Sustainable Energy Reviews 66, 617–630 (2016).
- [23] A.P. Kumar, “Analysis of hybrid systems: Software tools”, 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), 327–330 (2016).
- [24] P. Palej, H. Qusay, S. Kleszcz, R. Hanus, and M. Jaszczur, “Analysis and optimization of hybrid renewable energy systems”, Polityka Energetyczna – Energy Policy Journal 22 (2), 107–120 (2019).
- [25] N. Dragutinovic and B. Smaragdakis, “Hybrid renewable energy system application for electricity and heat supply of a residential building”, Thermal Science 20 (2), 695–706 (2016).
- [26] I. Panapakidis, D. Sarafianos, and M. Alexiadis, “Comparative analysis of different grid-independent hybrid power generation systems for a residential load”, Renewable and Sustainable Energy Reviews 16 (1), 551–563 (2012).
- [27] J. Paska, M. Kłos, K. Pawlak, K. Zagrajek, P. Marchel, M. Błędzińska, Ł. Michalski, and P. Terlikowski, “Topologies of hybrid RES installations with the strategy of contracting energy”, Przegląd Elektrotechniczny 10/2019, 94–97, [in Polish].
- [28] Monocrystalline PV module specification, https://www.sharp.pl/cps/rde/xchg/pl/hs.xsl/-/html/product-details-solar-modules.htm?product=NUAK300.
- [29] Power-wind speed characteristic, Hipar turbine 2.8 kW, http://hipar.pl/turbiny-wiatrowe/kalkulator-oplacalnosci-turbin-ecorote/kalkulator/ (Accessed: 18.04.2019) [in Polish].
- [30] P. Banasiak, A. Gorczyca-Goraj, and M. Przygrodzki, “Analysis of load schedules of a selected segment of low-voltage customers”, Energetyka 01/2017, 23–27 (2017), [in Polish].
- [31] Central Statistical Office in Poland, Report: Study of the energy efficiency of public administration buildings (government and self-government) in the years 2007–2013 (Accessed: 18. 04.2019), https://stat.gov.pl/statystyki-eksperymentalne/srodowisko-efektywnosc-energetyczna/badanie-efektywnosci-energetycznej-budynkow-administracji-publicznej-rzadowej-i-samorzadowej-za-lata-2007-2013-popt-2007-2013,4,1.html [in Polish].
- [32] Nissan website, electric car parameters, https://www.nissan-global.com/EN/index.html
- [33] BMW website, electric car parameters, https://www.bmw.com/en/index.html.
- [34] PVGIS portal, http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html.
- [35] C. Schwingshackl, M. Petitta, J.E. Wagner, G. Belluardo, D. Moser, M. Castelli, M. Zebisch, A. Tetzlaff, “Wind Effect on PV Module Temperature: Analysis of Different Techniques for an Accurate Estimation”, Energy Procedia 40, 77–86 (2013).
- [36] M. Mattei, G. Notton, G. Cristofari, M. Muselli, and P. Poggi, “Calculation of the polycrystalline PV module temperature using a simple method of energy balance”, Renewable Energy 31, 553–567 (2006).
- [37] E. Skoplaki and J.A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations”, Solar Energy 83 (5), 614–624 (2009).
- [38] I. Tetsuyuki and M. Atsushi, “Annual degradation rates of recent crystalline silicon photovoltaic modules”, Progress in Photovoltaics: Research and Applications 25, 953–967 (2017).
- [39] I. Staffell, and R. Green, “How does wind farm performance decline with age?”, Renewable Energy 66, 775–786 (2014).
- [40] P. Terlikowski, J. Paska, K. Pawlak, J. Kaliński, and D. Urbanek, “Modern financial models of nuclear power plants”, Progress in Nuclear Energy 110, 30–33 (2019).
- [41] J. Paska, Economics in electrical power engineering, Publishing House of Warsaw University of Technology, Warsaw, 2007, [in Polish].
- [42] The Ministry of State Assets in Poland, Polish energy policy until 2040 – project (2019), https://www.gov.pl/web/aktywa-panstwowe/polityka-energetyczna-polski-do-2040-r-zapraszamy-do-konsultacji1 [in Polish].
- [43] Lazard, Levelized Cost of Energy Analysis – ver. 13.0,2019, https://www.lazard.com/perspective/lcoe2019 (Accessed: 10.12.2019).
- [44] NEA, IEA, OECD, Projected Costs of Generating Electricity (2015) https://www.oecd-nea.org/ndd/egc/2015/
- [45] HomerPro User Manual, https://www.homerenergy.com/products/pro/docs/3.13/index.html (Accessed: 10.05.2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee250f07-66ea-4771-a883-c4280d4e8a71