PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Surface Preparation Technology for Steel Components with Fluoropolymer-based Coatings in Terms of Anti-adhesive and Mechanical Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the research presented in this paper was the evaluation of the technology of surface preparation of steel samples in terms of anti-adhesion and mechanical properties through the use of PFA coatings. Such coatings are used in many industries, e.g. in the manufacture and operation of metal moulds used, for example, in the production of resinous components. The specimens used in the study, which represented the surface of the moulds, were made from DC01 sheet. Six variants of release coating technology were used, differing in the number of technological operations and parameters. In the final stage, appropriate test methods were used to assess the energy properties of the coatings produced, the mechanical properties in terms of deformation of the supporting structure and the mechanical properties in terms of the effects on the coating itself. The scope of the research made it possible to determine the main properties that the manufactured coatings have in terms of their future practical applications. The results obtained for the surface free energy determined from the measurement of the surface wetting angle, the mechanical properties obtained from the three-point bending test and the evaluation of the surface quality of the coatings subjected to compressive and tensile deformations in the bending test, as well as the functional properties of the coatings in terms of their durability and adhesion determined in scratch tests, showed that the best characteristics were obtained for variant 6. This variant consisted of sequentially, after the initial stage, applying a primer layer and drying it for 15 minutes at 250°C, applying a PFA layer to the component at 150°C and then drying it for 15 minutes at 200°C and curing it for 20 minutes at 380°C. An additional layer of PFA was then applied and dried for 15 minutes at 200°C and cured for 20 minutes at 340°C. In addition, a long annealing for 3 hours at 340°C was applied in a given variant.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Paz-Gómez, Caño-Ochoa, Rodríguez-Alabanda, Romero, Cabrerizo-Vílchez, Guerrero-Vaca, i in. Water-Repellent Fluoropolymer-Based Coatings. Coatings. 2019;9(5):293.
  • 2. Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining chal¬lenges and prospects. International Materials Re¬views. 2013;58(6):315–48.
  • 3. Arshad A, Yajid MAM, Idris MH. Microstructural characterization of modified plasma spray LZ/YSZ thermal barrier coating by laser glazing. Materials Today: Proceedings. 2021;39:941–6.
  • 4. Critchlow GW, Litchfield RE, Sutherland I, Grandy DB, Wilson S. A review and compara¬tive study of release coatings for optimised ab¬hesion in resin transfer moulding applications. International Journal of Adhesion and Adhesives. 2006;26(8):577–99.
  • 5. Ruiz-Cabello FJM, Rodríguez-Criado JC, Ca¬brerizo-Vílchez M, Rodríguez-Valverde MA, Guerrero-Vacas G. Towards super-nonstick alumi¬nized steel surfaces. Progress in Organic Coatings. 2017;109:135–43.
  • 6. Sánchez-Urbano F, Paz-Gómez G, Rodríguez-Ala¬banda Ó, Romero P, Cabrerizo-Vílchez M, Rodrí¬guez-Valverde M, i in. Non-Stick Coatings in Alu¬minium Molds for the Production of Polyurethane Foam. Coatings. 2018;8(9):301.
  • 7. Rossi S, Gai G, De Benedetto R. Functional and per¬ceptive aspects of non-stick coatings for cookware. Materials & Design. 2014;53:782–90.
  • 8. Ashokkumar S, Adler-Nissen J, Møller P. Factors affecting the wettability of different surface materi¬als with vegetable oil at high temperatures and its relation to cleanability. Applied Surface Science. 2012;263:86–94.
  • 9. Bouaidat S, Berendsen C, Thomsen P, Petersen SG, Wolff A, Jonsmann J. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications. Lab Chip. 2004;4(6):632.
  • 10. Costa EC, De Melo-Diogo D, Moreira AF, Carv¬alho MP, Correia IJ. Spheroids Formation on Non- Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches. Biotech¬nol J. 2018;13(1):1700417.
  • 11.Tracton AA, redaktor. Coatings materials and surface coatings. Boca Raton, FL: CRC Press; 2007. 1 s.
  • 12.Friz M, Waibel F. Coating Materials. W: Kaiser N, Pulker HK. Optical Interference Coatings. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. s. 105–30. (Rhodes WT. Springer Series in Optical Sciences; t. 88).
  • 13.Rudawska A, Miturska-Barańska I, Doluk E. Influence of Surface Treatment on Steel Adhe¬sive Joints Strength—Varnish Coats. Materials. 2021;14(22):6938.
  • 14.Zhao Q, Wang C, Liu Y, Wang S. Bacterial adhe¬sion on the metal-polymer composite coatings. International Journal of Adhesion and Adhesives. 2007;27(2):85–91.
  • 15.Smith JR, Lamprou DA. Polymer coatings for bio¬medical applications: a review. Transactions of the IMF. 2014;92(1):9–19.
  • 16.Feng W, Patel SH, Young MY, Zunino JL, Xanthos M. Smart polymeric coatings—recent advances. Adv Polym Technol. 2007;26(1):1–13.
  • 17.S.N. Raman, Nguyen T, Mendis P. A Review on the Use of Polymeric Coatings for Retrofitting of Structural Elements against Blast Effects. EJSE. 2011;11:69–80.
  • 18.Schellenberger F, Encinas N, Vollmer D, Butt HJ. How Water Advances on Superhydrophobic Sur¬faces. Phys Rev Lett. 2016;116(9):096101.
  • 19.Liu Y, Song D, Choi CH. Anti- and De-Icing Be¬haviors of Superhydrophobic Fabrics. Coatings. 2018;8(6):198.
  • 20.Fürstner R, Barthlott W, Neinhuis C, Walzel P. Wetting and Self-Cleaning Properties of Arti¬ficial Superhydrophobic Surfaces. Langmuir. 2005;21(3):956–61.
  • 21.Dhanumalayan E, Joshi GM. Performance prop¬erties and applications of polytetrafluoroethylene (PTFE)—a review. Adv Compos Hybrid Mater. 2018;1(2):247–68.
  • 22.Yingying Zhang, Qilin Zhang, Chuanzhi Zhou, Ying Zhou. Mechanical properties of PTFE coated fab¬rics. Journal of Reinforced Plastics and Composites. 2010;29(24):3624–30.
  • 23.Xu K, Yang Z, Sun W, Wang L, Fan J, Zhang H, i in. Acid permeability related corrosion protection properties of PTFE coatings for waste heat recovery. Corrosion Science. 2023;218:111141.
  • 24.He Y, Farokhzadeh K, Edrisy A. Characterization of Thermal, Mechanical and Tribological Properties of Fluoropolymer Composite Coatings. J of Materi Eng and Perform. 2017;26(6):2520–34.
  • 25.Leivo E, Wilenius T, Kinos T, Vuoristo P, Mäntylä T. Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Progress in Organic Coatings. 2004;49(1):69–73.
  • 26.Barhoumi N, Khlifi K, Maazouz A, Lamnawar K. Fluorinated Ethylene Propylene Coatings De¬posited by a Spray Process: Mechanical Prop¬erties, Scratch and Wear Behavior. Polymers. 2022;14(2):347.
  • 27.Song HJ, Zhang ZZ. Study on the tribological and hydrophobic behaviors of phenolic coatings rein¬forced with PFW, PTFE and FEP. Surface and Coat¬ings Technology. 2006;201(3–4):1037–44.
  • 28.Hu J, Chen W, Zhao B, Yang D. Buildings with ETFE foils: A review on material properties, ar¬chitectural performance and structural behav¬ior. Construction and Building Materials. 2017; 131:411–22.
  • 29.Lamnatou Chr, Moreno A, Chemisana D, Reitsma F, Clariá F. Ethylene tetrafluoroethylene (ETFE) mate¬rial: Critical issues and applications with emphasis on buildings. Renewable and Sustainable Energy Reviews. 2018;82:2186–201.
  • 30.Zhang G, Liao H, Yu H, Ji V, Huang W, Mhais¬alkar SG, i in. Correlation of crystallization behav¬ior and mechanical properties of thermal sprayed PEEK coating. Surface and Coatings Technology. 2006;200(24):6690–5.
  • 31.Hou X, Shan CX, Choy KL. Microstructures and tri¬bological properties of PEEK-based nanocompos¬ite coatings incorporating inorganic fullerene-like nanoparticles. Surface and Coatings Technology. 2008;202(11):2287–91.
  • 32.Zhang C, Zhang G, Ji V, Liao H, Costil S, Cod¬det C. Microstructure and mechanical proper¬ties of flame-sprayed PEEK coating remelted by laser process. Progress in Organic Coatings. 2009;66(3):248–53.
  • 33.Wang H, Yan L, Gao D, Liu D, Wang C, Sun L, i in. Tribological properties of superamphiphobic PPS/ PTFE composite coating in the oilfield produced water. Wear. 2014;319(1–2):62–8.
  • 34.Xu H, Feng Z, Chen J, Zhou H. Tribological be¬havior of the carbon fiber reinforced polyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication. Materials Science and Engi¬neering: A. 2006;416(1–2):66–73.
  • 35.Al GGH et. Fluoropolymers 2: Properties. Dor¬drecht: Springer; 1999.
  • 36.Sales J, Schlipf M, Kapoor D. Critical Use of Fluo¬ropolymers in the Functioning of Modern Society. International Chemical Regulatory & Law Review. 2023;6(1).
  • 37.Quéré D, Reyssat M. Non-adhesive lotus and other hydrophobic materials. Phil Trans R Soc A. 2008;366(1870):1539–56.
  • 38.Tamir E, Sidess A, Srebnik S. Thermodynamic, structural, and mechanical properties of fluo¬ropolymers from molecular dynamics simulation: Comparison of force fields. Chemical Engineering Science. 2019;205:332–40.
  • 39. Li XW, Song RG, Jiang Y, Wang C, Jiang D. Sur¬face modification of TiO2 nanoparticles and its effect on the properties of fluoropolymer/TiO2 nanocomposite coatings. Applied Surface Science. 2013;276:761–8.
  • 40. Bhairamadgi NS, Pujari SP, Van Rijn CJM, Zuilhof H. Adhesion and Friction Properties of Fluoropoly¬mer Brushes: On the Tribological Inertness of Fluo¬rine. Langmuir. 2014;30(42):12532–40.
  • 41. Wang Z, Zuilhof H. Antifouling Properties of Fluoropolymer Brushes toward Organic Poly¬mers: The Influence of Composition, Thickness, Brush Architecture, and Annealing. Langmuir. 2016;32(26):6571–81.
  • 42. Kłonica M, Kuczmaszewski J. Modification of Ti6Al4V Titanium Alloy Surface Layer in the Ozone Atmosphere. Materials. 2019;12(13):2113.
  • 43. Szabelski J. Effect of incorrect mix ratio on strength of two component adhesive Butt-Joints tested at el¬evated temperature. Stančeková D, Vaško M, Ru¬dawska A, Čuboňová N, Sapietová A, Mrázik J, i in. MATEC Web Conf. 2018;244:01019.
  • 44. Szabelski J, Karpiński R, Jonak J, Frigione M. Ad¬hesive Joint Degradation Due to Hardener-to-Epoxy Ratio Inaccuracy under Varying Curing and Thermal Operating Conditions. Materials. 2022;15(21):7765.
  • 45. Zhao Q, Liu Y. Modification of stainless steel sur¬faces by electroless Ni-P and small amount of PTFE to minimize bacterial adhesion. Journal of Food En¬gineering. 2006;72(3):266–72.
  • 46. Kłonica M. Analysis of the effect of selected factors on the strength of adhesive joints. IOP Conf Ser: Mater Sci Eng. 2018;393:012041.
  • 47. Kłonica M. Application of the Ozonation Process for Shaping the Energy Properties of the Surface Layer of Polymer Construction Materials. J Ecol Eng. 2022;23(2):212–9.
  • 48. Karpiński, Szabelski, Maksymiuk. Seasoning Poly¬methyl Methacrylate (PMMA) Bone Cements with Incorrect Mix Ratio. Materials. 2019;12(19):3073.
  • 49. PN-EN 10130:2009 - Cold-rolled flat products of low carbon steels for cold forming.
  • 50. Park SJ, Cho MS, Lee JR. Studies on the Surface Free Energy of Carbon–Carbon Composites: Ef¬fect of Filler Addition on the ILSS of Compos¬ites. Journal of Colloid and Interface Science. 2000;226(1):60–4.
  • 51. Baldan A. Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives. 2012;38:95–116.
  • 52. Miturska-Barańska I, Józwik J, Bere P. Effect of Face Milling Parameters of Carbon Fiber Rein¬forced Plastics Composites on Surface Properties. Adv Sci Technol Res J. 2022;16(2):26–38.
  • 53. Miturska-Barańska I, Rudawska A, Doluk E. The Influence of Sandblasting Process Parameters of Aerospace Aluminium Alloy Sheets on Adhesive Joints Strength. Materials. 2021;14(21):6626.
  • 54. PN-EN ISO 7438:2021-04 - Metals - Bending test.
  • 55. ASTM D3359-22 - Standard Test Methods for Rat¬ing Adhesion by Tape Test.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee207527-4f4d-44f8-ba11-908467206615
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.