PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiplicity results for perturbed fourth-order Kirchhoff-type problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigate the existence of three generalized solutions for fourth-order Kirchhoff-type problems with a perturbed nonlinear term depending on two real parameters. Our approach is based on variational methods.
Rocznik
Strony
755--772
Opis fizyczny
33 Bibliogr.
Twórcy
  • Islamic Azad University Science and Research Branch Department of Mathematics Tehran, Iran
  • Islamic Azad University Qaemshahr Branch Department of Mathematics Qaemshahr, Iran
  • Razi University Faculty of Sciences Department of Mathematics 67149 Kermanshah, Iran
Bibliografia
  • [1] B. Alspach, H. Gavlas, Cycle decompositions of Kn and Kn — I, J. Combin. Theory Ser. B 81 (2001), 77-99.
  • [2] G. Bacso, Zs. Tuza, V. Voloshin, Unique colourings of bi-hypergraphs, Australas. J. Combin. 27 (2003), 33-45.
  • [3] P. Bonacini, L. Marino, Equitable tricolourings for A-cycle systems, Applied Mathematical Sciences 9 (2015) 58, 2881-2887.
  • [4] P. Bonacini, L. Marino, Equitable block colourings, Ars Comb. 120 (2015), 255-258.
  • [5] Cs. Bujtas, Zs. Tuza, V. Voloshin, Hypergraph Colouring, [in:] L.W. Beineke, R.J. Wilson (eds), Topics in Chromatic Graph Theory, Cambridge University Press, 2015, 230-254.
  • [6] P. Cameron, Parallelisms in complete designs, Cambridge University Press, Cambridge, 1976.
  • [7] C.J. Colbourn, A. Rosa, Specialized block-colourings of Steiner triple systems and the upper chromatic index, Graphs Combin. 19 (2003), 335-345.
  • [8] J.H. Dinitz, D.K. Garnick, B.D. McKay, There are 526,915,620 nonisomorphic one-factorizations of K12, J. Combin. Des. 2 (1994) 4, 273-285.
  • [9] L. Gionfriddo, M. Gionfriddo, G. Ragusa, Equitable specialized block-colourings for 4-cycle systems - /, Discrete Math. 310 (2010), 3126-3131.
  • [10] M. Gionfriddo, G. Quattrocchi, Colouring Jrcycle systems with equitable coloured blocks, Discrete Math. 284 (2004), 137-148.
  • [11] M. Gionfriddo, G. Ragusa, Equitable specialized block-colourings for Ą-cycle systems -II, Discrete Math. 310 (2010), 1986-1994.
  • [12] M. Gionfriddo, P. Horak, L. Milazzo, A. Rosa, Equitable specialized block-colourings for Steiner triple systems, Graphs Combin. 24 (2008), 313-326.
  • [13] J.A. Kennedy, Maximum packings of Kn with hexagons, Australas. J. Combin. 7 (1993), 101-110.
  • [14] S. Milici, A. Rosa, V. Voloshin, Colouring Steiner systems with specified block colour pattern, Discrete Math. 240 (2001), 145-160.
  • [15] A. Rosa, C. Huang, Another class of balanced graph designs: balanced circuit designs, Discrete Math. 12 (1975) 3, 269-293.
  • [16] B.R. Smith, Decomposing complete equipartite graphs into cycles of length 2p, J. Comb. Des. 16 (2008) 3, 244-252.
  • [17] D. Sotteau, Decompositions of Km>n (K%,^n) into cycles (circuits) of length 2k, J. Comb. Theory B, 30 (1981), 75-81.
  • [18] V. Voloshin, Coloring block designs as mixed hypergraphs: survey, Abstracts of papers presented to the American Mathematical Society (2005), vol. 26, no. 1, issue 139, p. 15.
  • [19] V. Voloshin, Graph Coloring: History, results and open problems, Alabama Journal of Mathematics, Spring/Fall 2009.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee1f19cd-48a3-4090-8cc7-62aacafe347a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.