NONNEGATIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE NONLINEAR ELLIPTIC EQUATIONS IN BOUNDED DOMAINS OF \mathbb{R}^{n}

Imed Bachar, Habib Mâagli, and Hassan Eltayeb
Communicated by Vicentiu D. Rădulescu

Abstract

In this paper, we obtain sufficient conditions for the existence of a unique nonnegative continuous solution of semipositone semilinear elliptic problem in bounded domains of $\mathbb{R}^{n}(n \geq 2)$. The global behavior of this solution is also given.

Keywords: nonnegative solution, semipositone, Kato class, fixed point theorem.
Mathematics Subject Classification: 35J25, 35A01, 35B09, 35J08.

1. INTRODUCTION

Let Ω be a bounded $C^{1,1}$-domain in $\mathbb{R}^{n}(n \geq 2)$. In this paper, we investigate the following semipositone nonlinear elliptic boundary value problem

$$
\begin{cases}-\Delta u(x)=a(x)+\lambda f(x, u(x)), & x \in \Omega \text { (in the distributional sense), } \tag{1.1}\\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

where $\lambda>0$ is a parameter and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is sign-changing measurable function. The function $a: \Omega \rightarrow[0, \infty)$, is required to belong to the Kato class $K(\Omega)$ introduced in [15] for $n \geq 3$ and [14] for $n=2$ as follows:

$$
K(\Omega)=\left\{q \in \mathcal{B}(\Omega), \lim _{r \rightarrow 0}\left(\sup _{x \in \Omega} \int_{\Omega \cap B(x, r)} \frac{\delta(y)}{\delta(x)} G_{\Omega}(x, y)|q(y)| d y\right)=0\right\}
$$

where $\mathcal{B}(\Omega)$ be the set of Borel measurable functions in $\Omega, G_{\Omega}(x, y)$ is the Green's function of the Laplace operator in Ω and $\delta(x)=d(x, \partial \Omega)$ denotes the Euclidean distance from x to $\partial \Omega$.

The class $K(\Omega)$ properly contains $L^{p}(\Omega)$ with $1<p \leq \infty$ and it has been proved that it is well adapted to study some nonlinear elliptic problems in Ω, see for instance [13-15, 21] and their references.

The nonlinearity $f(x, u(x))$ in (1.1) can be sign-changing (that is, we have the so-called semipositone boundary value problems in the literature). Semipositone BVPs occur in models for steady-state diffusion with reactions [3], and the study of such problems for elliptic and ordinary differential equations has been considered for many years, see for example $[2,5,6,8-12,19,23]$ and the references therein. Note that the mathematical analysis of nonnegative solutions to semipositone problems is more challenging since the nonlinearity is allowed to be sign-changing.

In [5], the authors studied the existence and multiplicity of solutions to the following perturbed bifurcation problems

$$
\begin{cases}-\Delta u(x)=\lambda\left(u-u^{3}\right)-\varepsilon, & x \in \Omega \tag{1.2}\\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

where $\lambda>0$ and $\varepsilon>0$.
By using sub-super solutions techniques, they obtained some local results of perturbed bifurcation theory. The existence of global of solutions was proved by using degree theory arguments.

In [1], by using the method of sub-super solutions, the authors have proved the existence of positive solution to the semipositone BVP

$$
\begin{cases}-\Delta u(x)=\lambda m(x) f(u(x)), & x \in \Omega \tag{1.3}\\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

where $\lambda>0, m \in C(\Omega)$ and $m(x) \geq m_{0}>0$ for $x \in \Omega, f \in C^{1}([0, r))$ is a nondecreasing function for some $r>0$ such that $f(0)<0$ and there exists $\alpha \in(0, r)$ such that $(t-\alpha) f(t) \geq 0$ for $t \in[0, r]$.

In [4], the authors considered the following boundary value problem

$$
\begin{cases}-\Delta u(x)=f(u(x))+h(x), & x \in D \tag{1.4}\\ u(x)=0, & x \in \partial D\end{cases}
$$

where D is an open, bounded and connected subset of $\mathbb{R}^{n}, n \in\{1,2,3\}$, with a C^{2}-boundary, $h \in L^{2}(D)$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is of class C^{1}.

They have proved that problem (1.4) has exactly one solution provided that f^{\prime} satisfy some convenient assumptions. Their approach is based on global invertibility result.

In [24], by using a variational method approach, the authors proved the existence and regularity of solutions for a class of degenerate elliptic equations of the form

$$
\begin{cases}-\operatorname{div}(a(x, u, \nabla u))+g(x, u)=b(x, u, \nabla u)+h(x), & x \in \Omega \tag{1.5}\\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

where Ω is a bounded $C^{1,1}$-domain of $\mathbb{R}^{n}(1<p<n), h \in L^{m}(\Omega)$, with $1<m<\frac{n}{p}$, $a: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, b: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $g: b: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions satisfying some adequate conditions.

In [17], under some natural hypotheses, using tools from Morse theory (in particular, critical groups), the authors proved an existence theorem (for the superlinear case) and a multiplicity theorem (for the linear resonant case) to the following two phase Robin problem

$$
\begin{cases}-\operatorname{div}\left(a_{0}(x)|D u|^{p-2} D u\right)-\Delta_{q} u+\xi(x)|u|^{p-2} u=f(x, u), & x \in \Omega \tag{1.6}\\ \frac{\partial u}{\partial n_{\theta}}+\beta(x)|u|^{p-2} u=0, & x \in \partial \Omega\end{cases}
$$

where $1<q<p \leq n$.
For more recently related results, we refer the reader to [16] and [22].
In this paper, we study the semipositone BVP (1.1) and provide sufficient conditions to guarantee that this problem has a unique nonnegative continuous solution. The global behavior of this solution is also given. Our approach relies on the properties of the Kato class $K(\Omega)$ and fixed point theorem in some convenient space.

The rest of this paper is organized as follows. In Section 2, we collect some basic properties of the Kato class $K(\Omega)$ and give sharp estimates on some potential functions. In Section 3, we present our main result and give its proof with some examples.
Next we adopt the following notations:
(i) $\mathcal{B}^{+}(\Omega)$ (resp. $\left.K^{+}(\Omega)\right)$ denotes the collection of all nonnegative functions in $\mathcal{B}(\Omega)$ (resp. in $K(\Omega)$).
(ii) For $f, g \in \mathcal{B}^{+}(\Omega)$, we say that $f \approx g$ in Ω, if there exists $c>0$ such that $\frac{1}{c} f(x) \leq g(x) \leq c f(x)$, for all $x \in \Omega$.
(iii) We refer to the set $C(\bar{\Omega})$ of all continuous functions in $\bar{\Omega}$ and let $C_{0}(\Omega)$ be the subclass of $C(\bar{\Omega})$ consisting of functions which vanish continuously on $\partial \Omega$. Note that $C_{0}(\Omega)$ is a Banach space equipped with norm

$$
\|g\|_{\infty}:=\sup _{x \in \Omega}|g(x)| .
$$

(iv) For $g \in \mathcal{B}^{+}(\Omega)$, we let

$$
V g(x):=\int_{\Omega} G_{\Omega}(x, y) g(y) d y, \quad \text { for } x \in \Omega
$$

We recall that if $g \in L_{\mathrm{loc}}^{1}(\Omega)$ and $V g \in L_{\mathrm{loc}}^{1}(\Omega)$, then we have (see [7, p. 52])

$$
\begin{equation*}
-\Delta(V g)=g, \text { in } \Omega \quad \text { (in the distributional sense }) \tag{1.7}
\end{equation*}
$$

Note that if $g \in \mathcal{B}^{+}(\Omega)$ such that $V g\left(x_{0}\right)<\infty$ for some $x_{0} \in \Omega$, then we have $V g \in L_{\mathrm{loc}}^{1}(\Omega)$ (see [7, Lemma 2.9]).

The letter c will denote a generic positive constant which may vary from line to line.

2. BASIC PROPERTIES OF THE KATO CLASS $K(\Omega)$

We recall that for $y \in \Omega$, the Green's function $G_{\Omega}(\cdot, y)$ of the Laplacian in Ω is defined as the solution, in the distributional sense, of the following problem

$$
\begin{cases}-\Delta G_{\Omega}(\cdot, y)=\delta_{y}, & \text { in } \Omega \\ G_{\Omega}(x, y)=0, & x \in \partial \Omega\end{cases}
$$

where δ_{y} denotes the Dirac measure at y.
By [15] for $n \geq 3$ and [20] for $n=2$, we have on $\Omega \times \Omega$,

$$
G_{\Omega}(x, y) \approx \begin{cases}\frac{\delta(x) \delta(y)}{|x-y|^{n-2}\left(|x-y|^{2}+\delta(x) \delta(y)\right)}, & \text { if } n \geq 3 \tag{2.1}\\ \log \left(1+\frac{\delta(x) \delta(y)}{|x-y|^{2}}\right), & \text { if } n=2\end{cases}
$$

Lemma 2.1. Let $q \in K(\Omega)$ and $x_{0} \in \bar{\Omega}$. Then the following assertions hold.
(i)

$$
\lim _{r \rightarrow 0}\left(\sup _{x \in \Omega} \int_{\Omega \cap B\left(x_{0}, r\right)} G_{\Omega}(x, y)|q(y)| d y\right)=0
$$

(ii) The function $x \mapsto \delta(x) q(x)$ is in $L^{1}(\Omega)$. In particular $x \rightarrow q(x) \in L_{\mathrm{loc}}^{1}(\Omega)$.
(iii) $\|q\|_{\Omega}:=\sup _{x \in \Omega} \int_{\Omega} \frac{\delta(y)}{\delta(x)} G_{\Omega}(x, y)|q(y)| d y<\infty$.
(iv) Assume that Ω is the unit ball $B(0,1)$ and q is a radial function in $B(0,1)$, then

$$
q \in K(B(0,1)) \Leftrightarrow \int_{0}^{1} r(1-r)|q(r)| d r<\infty
$$

Proof. See [15] for $n \geq 3$ and [14] for $n=2$.
Remark 2.2 ([21]). Let $q \in K(\Omega)$, then

$$
\begin{equation*}
\alpha_{q}:=\sup _{x, y \in \Omega} \int_{\Omega} \frac{G_{\Omega}(x, z) G_{\Omega}(z, y)}{G_{\Omega}(x, y)}|q(z)| d z<\infty . \tag{2.2}
\end{equation*}
$$

In fact, we have

$$
\alpha_{q}<\infty \text { if and only if }\|q\|_{\Omega}<\infty
$$

The next Proposition is due to [15] for $n \geq 3$ and [14] for $n=2$.
Proposition 2.3. Let $q \in K(\Omega)$. Then the function

$$
\begin{equation*}
x \rightarrow V q(x):=\int_{\Omega} G_{\Omega}(x, y) q(y) d y \text { belongs to } C_{0}(\Omega) . \tag{2.3}
\end{equation*}
$$

Proof. Let $\varepsilon>0, x_{0} \in \bar{\Omega}$ and $q \in K(\Omega)$. From Lemma 2.1(i) there exists $r>0$ such that

$$
\sup _{z \in \Omega} \int_{\Omega \cap B\left(x_{0}, r\right)} G_{\Omega}(z, y)|q(y)| d y \leq \frac{\varepsilon}{4} .
$$

Assume that $x_{0} \in \Omega$ and let $x \in B\left(x_{0}, \frac{r}{2}\right) \cap \Omega$, then

$$
\begin{aligned}
\left|V q(x)-V q\left(x_{0}\right)\right| \leq & 2 \sup _{z \in \Omega} \int_{\Omega \cap B\left(x_{0}, r\right)} G_{\Omega}(z, y)|q(y)| d y \\
& +\int_{\Omega_{0}}\left|G_{\Omega}(x, y)-G_{\Omega}\left(x_{0}, y\right)\right||q(y)| d y \\
\leq & \frac{\varepsilon}{2}+\int_{\Omega_{0}}\left|G_{\Omega}(x, y)-G_{\Omega}\left(x_{0}, y\right)\right||q(y)| d y
\end{aligned}
$$

where $\Omega_{0}=\Omega \cap B^{c}\left(x_{0}, r\right)$.
Or for all $x \in B\left(x_{0}, \frac{r}{2}\right) \cap \Omega$ and $y \in \Omega_{0}$, we have $|x-y| \geq \frac{r}{2}$. Therefore by (2.1) we deduce that

$$
\left|G_{\Omega}(x, y)-G_{\Omega}\left(x_{0}, y\right)\right| \leq c \frac{\delta(x) \delta(y)}{|x-y|^{n}} \leq \frac{c}{r^{n}} \delta(y)
$$

where c is some positive constant.
Now, since $(x, y) \mapsto G_{\Omega}(x, y)$ is continuous on $\left(B\left(x_{0}, \frac{r}{2}\right) \cap \Omega\right) \times \Omega_{0}$, we get by Lemma 2.1(ii) and Lebesgue's dominated convergence theorem,

$$
\int_{\Omega_{0}}\left|G_{\Omega}(x, y)-G_{\Omega}\left(x_{0}, y\right)\right||q(y)| d y \rightarrow 0 \quad \text { as } x \rightarrow x_{0}
$$

It follows that there exists $\delta>0$ with $\delta<\frac{r}{2}$ such that if $x \in B\left(x_{0}, \delta\right) \cap \Omega$,

$$
\int_{\Omega_{0}}\left|G_{\Omega}(x, y)-G_{\Omega}\left(x_{0}, y\right)\right||q(y)| d y \leq \frac{\varepsilon}{2}
$$

Hence for $x \in B\left(x_{0}, \delta\right) \cap \Omega$, we have

$$
\left|V q(x)-V q\left(x_{0}\right)\right| \leq \varepsilon
$$

This implies that

$$
\lim _{x \rightarrow x_{0}} V q(x)=V q\left(x_{0}\right)
$$

If $x_{0} \in \partial \Omega$ and $x \in B\left(x_{0}, \frac{r}{2}\right) \cap \Omega$, then we have

$$
|V q(x)| \leq \sup _{z \in \Omega} \int_{\Omega \cap B\left(x_{0}, r\right)} G_{\Omega}(z, y)|q(y)| d y+\int_{\Omega_{0}} G_{\Omega}(x, y)|q(y)| d y
$$

Now, since $\lim _{x \rightarrow x_{0}} G_{\Omega}(x, y)=0$, for all $y \in \Omega_{0}$, we deduce by similar arguments as above that

$$
\lim _{x \rightarrow x_{0}} V q(x)=0 .
$$

Hence $V q \in C_{0}(\Omega)$.
Remark 2.4 (See [15] for $n \geq 3$ and [14] for $n=2$). The function $x \mapsto(\delta(x))^{-\alpha}$ belongs to $K(\Omega)$ if and only if $\alpha<2$.
Proposition 2.5. Let $D=\operatorname{diam}(\Omega), \alpha<2$ and $g \in \mathcal{B}^{+}(\Omega)$ satisfying

$$
g(x) \approx(\delta(x))^{-\alpha}, \text { on } \Omega .
$$

Then $x \rightarrow g(x) \in K(\Omega)$ and we have

$$
V g(x) \approx \begin{cases}(\delta(x))^{2-\alpha}, & \text { if } 1<\alpha<2, \\ (\delta(x)) \log \left(\frac{2 D}{\delta(x)}\right), & \text { if } \alpha=1, \\ \delta(x), & \text { if } \alpha<1 .\end{cases}
$$

Proof. See [13, Proposition 1].

3. MAIN RESULT

In order to study the semipositone BVP (1.1), we make the following assumptions.
$(H 1) a$ is a nontrivial function in $K^{+}(\Omega)$.
(H2) $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function with $f(x, 0)=0$, for all $x \in \Omega$.
(H3) There exists a function $q \in K^{+}(\Omega)$ such that

$$
|f(x, u)-f(x, v)| \leq q(x)|u-v|, \quad \text { for all } x \in \Omega \text { and } u, v \in \mathbb{R} .
$$

Define

$$
\begin{equation*}
\omega(x):=\int_{\Omega} G_{\Omega}(x, y) a(y) d y, \quad x \in \Omega . \tag{3.1}
\end{equation*}
$$

Then by Proposition 2.3, ω belongs to $C_{0}(\Omega)$ and by Lemma 2.1 (ii) and (1.7), ω satisfies in the distributional sense

$$
\begin{cases}-\Delta \omega=a, & \text { in } \Omega \tag{3.2}\\ \omega(x)=0, & x \in \partial \Omega\end{cases}
$$

We recall that

$$
\alpha_{q}:=\sup _{x, y \in \Omega} \int_{\Omega} \frac{G_{\Omega}(x, z) G_{\Omega}(z, y)}{G_{\Omega}(x, y)} q(z) d z
$$

and by Remark 2.2, $\alpha_{q}<\infty$.

Lemma 3.1. Let $p \in K^{+}(\Omega)$, then

$$
\begin{equation*}
V(p \omega)(x)=\int_{\Omega} G_{\Omega}(x, y) p(y) \omega(y) d y \leq \alpha_{p} \omega(x), \text { for all } x \in \Omega \tag{3.3}
\end{equation*}
$$

where ω is given by (3.1).
Proof. By the Fubini-Tonelli theorem, for all $x \in \Omega$, we have

$$
\begin{aligned}
V(p \omega)(x) & =\int_{\Omega} a(z)\left(\int_{\Omega} G_{\Omega}(x, y) G_{\Omega}(y, z) p(y) d y\right) d z \\
& \leq \alpha_{p} \int_{\Omega} G_{\Omega}(x, z) a(z) d z \\
& =\alpha_{p} \omega(x)
\end{aligned}
$$

Lemma 3.2. Let $h, g \in \mathcal{B}(\Omega)$ such that $0 \leq h \leq g$. Assume that $\operatorname{Vg} \in C_{0}(\Omega)$, then $V h \in C_{0}(\Omega)$.

Proof. From [18, pp. 19-20], $V h$ is a lower semicontinuous function in Ω. Since the function $V g \in C_{0}(\Omega)$, then by writing,

$$
V g=V h+V(g-h)
$$

$V h$ becomes upper semicontinuous function in Ω. Hence $V h \in C_{0}(\Omega)$.
Now we state our main result.
Theorem 3.3. Assume that $(H 1)-(H 3)$ hold. Then there exists $\lambda^{*}>0$, such that for $\lambda \in\left(0, \lambda^{*}\right)$, BVP (1.1) has a unique nonnegative solution $u \in C_{0}(\Omega)$ satisfying

$$
\begin{equation*}
\left(\frac{2 \lambda^{*}-2 \lambda}{2 \lambda^{*}-\lambda}\right) \omega(x) \leq u(x) \leq\left(\frac{2 \lambda^{*}}{2 \lambda^{*}-\lambda}\right) \omega(x), \quad \text { for all } x \in \bar{\Omega} \tag{3.4}
\end{equation*}
$$

Proof. Assume that (H1)-(H3) hold. Consider the Banach space

$$
E_{\omega}=\left\{v \in C_{0}(\Omega): \sup _{x \in \Omega} \frac{|v(x)|}{\omega(x)}<\infty\right\}
$$

equipped with the norm

$$
\|v\|_{\omega}:=\sup _{x \in \Omega} \frac{|v(x)|}{\omega(x)}
$$

In particular, $\left(E_{\omega}, d\right)$ becomes a complete metric space, with

$$
d(u, v):=\|u-v\|_{\omega} .
$$

Set $\lambda^{*}:=\frac{1}{2 \alpha_{q}}$. Clearly $\lambda^{*}>0$ and for $\lambda \in\left(0, \lambda^{*}\right)$, let

$$
F_{\omega}=\left\{v \in E_{\omega}:\left(\frac{1-2 \lambda \alpha_{q}}{1-\lambda \alpha_{q}}\right) \omega(x) \leq v(x) \leq\left(\frac{1}{1-\lambda \alpha_{q}}\right) \omega(x) \text { for } x \in \bar{\Omega}\right\} .
$$

Since $\omega \in F_{\omega}$, we conclude that F_{ω} is a non-empty closed subset of $\left(E_{\omega}, d\right)$ and therefore $\left(F_{\omega}, d\right)$ is a complete metric space.

Define an operator T on F_{ω} by

$$
\begin{equation*}
T v(x)=\omega(x)+\lambda \int_{\Omega} G_{\Omega}(x, y) f(y, v(y)) d y, \text { for } x \in \bar{\Omega} \tag{3.5}
\end{equation*}
$$

We claim that $T\left(F_{\omega}\right) \subset F_{\omega}$. Indeed, from (H1)-(H3), for all $v \in F_{\omega}$, we have

$$
\begin{align*}
|f(y, v(y))| & \leq\left(\frac{1}{1-\lambda \alpha_{q}}\right) q(y) \omega(y) \tag{3.6}\\
& \leq\left(\frac{\|\omega\|_{\infty}}{1-\lambda \alpha_{q}}\right) q(y) \tag{3.7}
\end{align*}
$$

Hence, by using (3.7), Proposition 2.3 and Lemma 3.2, we obtain that the function

$$
x \rightarrow h(x):=\int_{\Omega} G_{\Omega}(x, y) f(y, v(y)) d y \in C_{0}(\Omega)
$$

So $T\left(F_{\omega}\right) \subset C_{0}(\Omega)$.
For $v \in F_{\omega}$, we obtain by (3.6) and Lemma 3.1,

$$
\frac{-\lambda \alpha_{q}}{1-\lambda \alpha_{q}} \omega(x) \leq \lambda \int_{\Omega} G_{\Omega}(x, y) f(y, v(y)) d y \leq \frac{\lambda \alpha_{q}}{1-\lambda \alpha_{q}} \omega(x)
$$

Hence from (3.5), we conclude that $T\left(F_{\omega}\right) \subset F_{\omega}$.
Next, by using (3.5), (H3) and (3.3), we obtain for $v_{1}, v_{2} \in F_{\omega}$

$$
\begin{aligned}
\left|T v_{1}(x)-T v_{2}(x)\right| & \leq \lambda \int_{\Omega} G_{\Omega}(x, y)\left|f\left(y, v_{1}(y)\right)-f\left(y, v_{2}(y)\right)\right| d y \\
& \leq \lambda \int_{\Omega} G_{\Omega}(x, y) q(y)\left|v_{1}(y)-v_{2}(y)\right| d y \\
& \leq \lambda d\left(v_{1}, v_{2}\right) \int_{\Omega} G_{\Omega}(x, y) q(y) \omega(y) d y \\
& \leq \lambda \alpha_{q} d\left(v_{1}, v_{2}\right) \omega(x) .
\end{aligned}
$$

Hence,

$$
d\left(T v_{1}, T v_{2}\right) \leq \lambda \alpha_{q} d\left(v_{1}, v_{2}\right) .
$$

Since $\lambda \alpha_{q}<\frac{1}{2}$, then T is a contraction operator in F_{ω}. So, there exists a unique $u \in F_{\omega}$ such that

$$
\begin{equation*}
u(x)=\omega(x)+\lambda \int_{\Omega} G_{\Omega}(x, y) f(y, u(y)) d y, \quad \text { for } x \in \bar{\Omega} \tag{3.8}
\end{equation*}
$$

It remains to prove that u is a solution of BVP (1.1).

To this end, by using (3.7) and Lemma 2.1 (ii), we derive that the function $y \rightarrow f(y, u(y)) \in L_{\mathrm{loc}}^{1}(\Omega)$ and from (3.8) the function $x \rightarrow \int_{\Omega} G_{\Omega}(x, y) f(y, u(y)) d y \in$ $L_{\mathrm{loc}}^{1}(\Omega)$.

Hence, from (1.7) and (3.2), we conclude that u is a solution of BVP (1.1) satisfying (3.4).

Remark 3.4. Let us consider the function $f(\cdot, u)=2 u+\sin u$. Note that f satisfies conditions (H2)-(H3) and we have

$$
\begin{equation*}
u \leq f(\cdot, u) \leq 3 u, \text { for } u \geq 0 \tag{3.9}
\end{equation*}
$$

In this case problem (1.1) has no positive solution if λ is large.
Indeed, let φ_{1} denote the normalized positive eigenfunction corresponding to the first eigenvalue λ_{1} of $(-\Delta)$. Thus, by multiplication with φ_{1} in (1.1) and integrating, we find

$$
\lambda_{1} \int_{\Omega} u \varphi_{1} d x=\int_{\Omega} a \varphi_{1} d x+\lambda \int_{\Omega} f(x, u) \varphi_{1} d x>\lambda \int_{\Omega} u \varphi_{1} d x
$$

This relation shows that problem (1.1) has no positive solution if $\lambda \geq \lambda_{1}$.
Example 3.5. Let $\alpha, \beta<2$. By Theorem 3.3, there exists $\lambda^{*}>0$, such that for $\lambda \in\left(0, \lambda^{*}\right)$, the following BVP

$$
\begin{cases}-\Delta u(x)=\frac{1}{(\delta(x))^{\alpha}}+\lambda \frac{1}{(\delta(x))^{\beta}} \sin (u(x)), & x \in \Omega \\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

has a unique nonnegative solution $u \in C_{0}(\Omega)$ satisfying

$$
\begin{equation*}
\left(\frac{2 \lambda^{*}-2 \lambda}{2 \lambda^{*}-\lambda}\right) \omega(x) \leq u(x) \leq\left(\frac{2 \lambda^{*}}{2 \lambda^{*}-\lambda}\right) \omega(x), \quad \text { for all } x \in \bar{\Omega}, \tag{3.10}
\end{equation*}
$$

where $\omega(x)=V\left(\frac{1}{(\delta(\cdot))^{\alpha}}\right)(x)$.
In particular, from (3.10) and Proposition 2.5, we deduce that

$$
u(x) \approx \begin{cases}(\delta(x))^{2-\alpha}, & \text { if } 1<\alpha<2 \\ (\delta(x)) \log \left(\frac{2 D}{\delta(x)}\right), & \text { if } \alpha=1 \\ \delta(x), & \text { if } \alpha<1\end{cases}
$$

where $D=\operatorname{diam}(\Omega)$.
Example 3.6. Let $\gamma \in \mathbb{R}, q$ and a be two functions in $K^{+}(\Omega)$. Then by Theorem 3.3, there exists $\lambda^{*}>0$, such that for $\lambda \in\left(0, \lambda^{*}\right)$, the following BVP

$$
\begin{cases}-\Delta u(x)=a(x)+\lambda q(x)(\delta(x))^{\gamma}\left(\cos \left(\frac{u(x)}{(\delta(x))^{\gamma}}\right)-1\right), & x \in \Omega \\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

has a unique nonnegative solution $u \in C_{0}(\Omega)$ satisfying

$$
\left(\frac{2 \lambda^{*}-2 \lambda}{2 \lambda^{*}-\lambda}\right) V(a)(x) \leq u(x) \leq\left(\frac{2 \lambda^{*}}{2 \lambda^{*}-\lambda}\right) V(a)(x), \text { for all } x \in \bar{\Omega} .
$$

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this Research group NO (RG-1435-043). The authors would like to thank the anonymous referees for their careful reading of the paper.

REFERENCES

[1] G.A. Afrouzi, S.H. Rasouli, On positive solutions for some nonlinear semipositone elliptic boundary value problems, Nonlinear Anal. Model. Control 11 (2006), no. 4, 323-329.
[2] V. Anuradha, D.D. Hai, R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc. 124 (1996), no. 3, 757-763.
[3] R. Aris, Introduction to the Analysis of Chemical Reactors, Prentice Hall, New Jersey, 1965.
[4] M. Bełdziński, M. Galewski, On solvability of elliptic boundary value problems via global invertibility, Opuscula Math. 40 (2020), no. 1, 37-47.
[5] K.J. Brown, R. Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), no. 1-2, 71-82.
[6] A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 291-302.
[7] K.L. Chung, Z. Zhao, From Brownian Motion to Schrödinger's Equation, Springer-Verlag, 1995.
[8] G. Figueiredo, V.D. Rădulescu, Nonhomogeneous equations with critical exponential growth and lack of compactness, Opuscula Math. 40 (2020), no. 1, 71-92.
[9] J.R. Graef, L. Kong, Positive solutions for third order semipositone boundary value problems, Appl. Math. Lett. 22 (2009), no. 8, 1154-1160.
[10] M. Ghergu, V.D. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), no. 2, 520-536.
[11] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441-467.
[12] R. Ma, S. Wang, Positive solutions for some semi-positone problems with nonlinear boundary conditions via bifurcation theory, Mediterr. J. Math. 17 (2020), Article no. 12.
[13] H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), no. 9, 2941-2947.
[14] H. Mâagli, L. Mâatoug, Singular solutions of a nonlinear equation in bounded domains of \mathbb{R}^{2}, J. Math. Anal. Appl. 270 (2002), 230-246.
[15] H. Mâagli, M. Zribi, On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domain of \mathbb{R}^{n}, Positivity 9 (2005), no. 4, 667-686.
[16] N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257-278.
[17] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. Lond. Math. Soc. 52 (2020), no. 3, 546-560.
[18] S.C. Port, C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, San Diego, 1978.
[19] V.D. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and its Applications, 6. Hindawi Publishing Corporation, 2008.
[20] M. Selmi, Inequalities for Green functions in a Dini-Jordan domain in \mathbb{R}^{2}, Potential. Anal. 13 (2000), no. 1, 81-102.
[21] F. Toumi, Existence of positive solutions for nonlinear boundary-value problems in bounded domains of \mathbb{R}^{n}, Abstr. Appl. Anal. 2006 (2006), Article ID 95480.
[22] J. Zhang, W. Zhang, V.D. Rădulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z. 301 (2022), no. 4, 4037-4078.
[23] X. Zhang, L. Liu, Y. Wu, Positive solutions of nonresonance semipositone singular Dirichlet boundary value problems, Nonlinear Anal. 68 (2008), no. 1, 97-108.
[24] W. Zou, X. Li, Existence results for nonlinear degenerate elliptic equations with lower order terms, Adv. Nonlinear Anal. 10 (2021), no. 1, 301-310.

Imed Bachar (corresponding author)
abachar@ksu.edu.sa
(©) https://orcid.org/0000-0003-3808-5786
King Saud University
College of Science, Mathematics Department
P.O. Box 2455, Riyadh 11451, Saudi Arabia

Habib Mâagli
abobaker@kau.edu.sa, habib.maagli@fst.rnu.tn
(D) https://orcid.org/0000-0002-7977-8039

King Abdulaziz University
College of Sciences and Arts, Rabigh Campus, Department of Mathematics
P.O. Box 344, Rabigh 21911, Saudi Arabia

Hassan Eltayeb
hgadain@ksu.edu.sa
(D) https://orcid.org/0000-0003-1820-9921

King Saud University
College of Science, Mathematics Department P.O. Box 2455, Riyadh 11451, Saudi Arabia

Received: May 26, 2022.
Revised: September 18, 2022.
Accepted: September 19, 2022.

