NONNEGATIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE NONLINEAR ELLIPTIC EQUATIONS IN BOUNDED DOMAINS OF \mathbb{R}^n

Imed Bachar, Habib Mâagli, and Hassan Eltayeb

Communicated by Vicentiu D. Rădulescu

Abstract. In this paper, we obtain sufficient conditions for the existence of a unique nonnegative continuous solution of semipositone semilinear elliptic problem in bounded domains of \mathbb{R}^n $(n \ge 2)$. The global behavior of this solution is also given.

Keywords: nonnegative solution, semipositone, Kato class, fixed point theorem.

Mathematics Subject Classification: 35J25, 35A01, 35B09, 35J08.

1. INTRODUCTION

Let Ω be a bounded $C^{1,1}$ -domain in \mathbb{R}^n $(n \geq 2)$. In this paper, we investigate the following semipositone nonlinear elliptic boundary value problem

$$\begin{cases} -\Delta u(x) = a(x) + \lambda f(x, u(x)), & x \in \Omega \text{ (in the distributional sense)}, \\ u(x) = 0, & x \in \partial\Omega, \end{cases}$$
(1.1)

where $\lambda > 0$ is a parameter and $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is sign-changing measurable function. The function $a: \Omega \to [0, \infty)$, is required to belong to the Kato class $K(\Omega)$ introduced in [15] for $n \geq 3$ and [14] for n = 2 as follows:

$$K(\Omega) = \left\{ q \in \mathcal{B}(\Omega), \lim_{r \to 0} \left(\sup_{\substack{x \in \Omega \\ \Omega \cap B(x,r)}} \frac{\delta(y)}{\delta(x)} G_{\Omega}(x,y) |q(y)| dy \right) = 0 \right\},$$

where $\mathcal{B}(\Omega)$ be the set of Borel measurable functions in Ω , $G_{\Omega}(x, y)$ is the Green's function of the Laplace operator in Ω and $\delta(x) = d(x, \partial\Omega)$ denotes the Euclidean distance from x to $\partial\Omega$.

The class $K(\Omega)$ properly contains $L^p(\Omega)$ with 1 and it has been proved $that it is well adapted to study some nonlinear elliptic problems in <math>\Omega$, see for instance [13–15,21] and their references.

@ 2022 Authors. Creative Commons CC-BY 4.0

The nonlinearity f(x, u(x)) in (1.1) can be sign-changing (that is, we have the so-called semipositone boundary value problems in the literature). Semipositone BVPs occur in models for steady-state diffusion with reactions [3], and the study of such problems for elliptic and ordinary differential equations has been considered for many years, see for example [2, 5, 6, 8-12, 19, 23] and the references therein. Note that the mathematical analysis of nonnegative solutions to semipositone problems is more challenging since the nonlinearity is allowed to be sign-changing.

In [5], the authors studied the existence and multiplicity of solutions to the following perturbed bifurcation problems

$$\begin{cases} -\Delta u(x) = \lambda(u - u^3) - \varepsilon, & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega, \end{cases}$$
(1.2)

where $\lambda > 0$ and $\varepsilon > 0$.

By using sub-super solutions techniques, they obtained some local results of perturbed bifurcation theory. The existence of global of solutions was proved by using degree theory arguments.

In [1], by using the method of sub-super solutions, the authors have proved the existence of positive solution to the semipositone BVP

$$\begin{cases} -\Delta u(x) = \lambda m(x) f(u(x)), & x \in \Omega, \\ u(x) = 0, & x \in \partial \Omega, \end{cases}$$
(1.3)

where $\lambda > 0$, $m \in C(\Omega)$ and $m(x) \ge m_0 > 0$ for $x \in \Omega$, $f \in C^1([0, r))$ is a nondecreasing function for some r > 0 such that f(0) < 0 and there exists $\alpha \in (0, r)$ such that $(t - \alpha)f(t) \ge 0$ for $t \in [0, r]$.

In [4], the authors considered the following boundary value problem

$$\begin{cases} -\Delta u(x) = f(u(x)) + h(x), & x \in D, \\ u(x) = 0, & x \in \partial D, \end{cases}$$
(1.4)

where D is an open, bounded and connected subset of \mathbb{R}^n , $n \in \{1, 2, 3\}$, with a C^2 -boundary, $h \in L^2(D)$ and $f : \mathbb{R} \to \mathbb{R}$ is of class C^1 .

They have proved that problem (1.4) has exactly one solution provided that f' satisfy some convenient assumptions. Their approach is based on global invertibility result.

In [24], by using a variational method approach, the authors proved the existence and regularity of solutions for a class of degenerate elliptic equations of the form

$$\begin{cases} -\operatorname{div}(a(x, u, \nabla u)) + g(x, u) = b(x, u, \nabla u) + h(x), & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega, \end{cases}$$
(1.5)

where Ω is a bounded $C^{1,1}$ -domain of \mathbb{R}^n $(1 , <math>h \in L^m(\Omega)$, with $1 < m < \frac{n}{p}$, $a: \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $b: \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ and $g: b: \Omega \times \mathbb{R} \to \mathbb{R}$ are Carathéodory functions satisfying some adequate conditions.

In [17], under some natural hypotheses, using tools from Morse theory (in particular, critical groups), the authors proved an existence theorem (for the superlinear case) and a multiplicity theorem (for the linear resonant case) to the following two phase Robin problem

$$\begin{cases} -\operatorname{div}(a_0(x) |Du|^{p-2} Du) - \Delta_q u + \xi(x) |u|^{p-2} u = f(x, u), & x \in \Omega, \\ \frac{\partial u}{\partial n_\theta} + \beta(x) |u|^{p-2} u = 0, & x \in \partial\Omega, \end{cases}$$
(1.6)

where $1 < q < p \le n$.

For more recently related results, we refer the reader to [16] and [22].

In this paper, we study the semipositone BVP (1.1) and provide sufficient conditions to guarantee that this problem has a unique nonnegative continuous solution. The global behavior of this solution is also given. Our approach relies on the properties of the Kato class $K(\Omega)$ and fixed point theorem in some convenient space.

The rest of this paper is organized as follows. In Section 2, we collect some basic properties of the Kato class $K(\Omega)$ and give sharp estimates on some potential functions. In Section 3, we present our main result and give its proof with some examples.

Next we adopt the following notations:

- (i) $\mathcal{B}^+(\Omega)$ (resp. $K^+(\Omega)$) denotes the collection of all nonnegative functions in $\mathcal{B}(\Omega)$ (resp. in $K(\Omega)$).
- (ii) For $f, g \in \mathcal{B}^+(\Omega)$, we say that $f \approx g$ in Ω , if there exists c > 0 such that $\frac{1}{c}f(x) \leq g(x) \leq cf(x)$, for all $x \in \Omega$.
- (iii) We refer to the set $C(\overline{\Omega})$ of all continuous functions in $\overline{\Omega}$ and let $C_0(\Omega)$ be the subclass of $C(\overline{\Omega})$ consisting of functions which vanish continuously on $\partial\Omega$. Note that $C_0(\Omega)$ is a Banach space equipped with norm

$$\left\|g\right\|_{\infty} := \sup_{x \in \Omega} \left|g(x)\right|.$$

(iv) For $g \in \mathcal{B}^+(\Omega)$, we let

$$Vg(x) := \int_{\Omega} G_{\Omega}(x, y)g(y)dy, \text{ for } x \in \Omega.$$

We recall that if $g \in L^1_{loc}(\Omega)$ and $Vg \in L^1_{loc}(\Omega)$, then we have (see [7, p. 52])

$$-\Delta(Vg) = g$$
, in Ω (in the distributional sense). (1.7)

Note that if $g \in \mathcal{B}^+(\Omega)$ such that $Vg(x_0) < \infty$ for some $x_0 \in \Omega$, then we have $Vg \in L^1_{loc}(\Omega)$ (see [7, Lemma 2.9]).

The letter c will denote a generic positive constant which may vary from line to line.

2. BASIC PROPERTIES OF THE KATO CLASS $K(\Omega)$

We recall that for $y \in \Omega$, the Green's function $G_{\Omega}(\cdot, y)$ of the Laplacian in Ω is defined as the solution, in the distributional sense, of the following problem

$$\begin{cases} -\Delta G_{\Omega}(\cdot, y) = \delta_{y}, & \text{in } \Omega, \\ G_{\Omega}(x, y) = 0, & x \in \partial \Omega, \end{cases}$$

where δ_y denotes the Dirac measure at y.

By [15] for $n \ge 3$ and [20] for n = 2, we have on $\Omega \times \Omega$,

$$G_{\Omega}(x,y) \approx \begin{cases} \frac{\delta(x)\delta(y)}{|x-y|^{n-2}\left(|x-y|^2+\delta(x)\delta(y)\right)}, & \text{if } n \ge 3\\ \log\left(1+\frac{\delta(x)\delta(y)}{|x-y|^2}\right), & \text{if } n = 2. \end{cases}$$
(2.1)

Lemma 2.1. Let $q \in K(\Omega)$ and $x_0 \in \overline{\Omega}$. Then the following assertions hold. (i)

$$\lim_{r \to 0} \left(\sup_{\substack{x \in \Omega \\ \Omega \cap B(x_0, r)}} \int_{G_{\Omega}(x, y) |q(y)| dy} \right) = 0.$$

- (ii) The function $x \mapsto \delta(x)q(x)$ is in $L^1(\Omega)$. In particular $x \to q(x) \in L^1_{loc}(\Omega)$. (iii) $\|q\|_{\Omega} := \sup_{x \in \Omega} \int_{\Omega} \frac{\delta(y)}{\delta(x)} G_{\Omega}(x,y) |q(y)| dy < \infty$.
- (iv) Assume that Ω is the unit ball B(0,1) and q is a radial function in B(0,1), then

$$q \in K(B(0,1)) \Leftrightarrow \int_{0}^{1} r(1-r) |q(r)| \, dr < \infty.$$

Proof. See [15] for $n \ge 3$ and [14] for n = 2.

Remark 2.2 ([21]). Let $q \in K(\Omega)$, then

$$\alpha_q := \sup_{x,y \in \Omega} \int_{\Omega} \frac{G_{\Omega}(x,z)G_{\Omega}(z,y)}{G_{\Omega}(x,y)} |q(z)| dz < \infty.$$
(2.2)

In fact, we have

 $\alpha_q < \infty$ if and only if $\|q\|_{\Omega} < \infty$.

The next Proposition is due to [15] for $n \ge 3$ and [14] for n = 2. **Proposition 2.3.** Let $q \in K(\Omega)$. Then the function

$$x \to Vq(x) := \int_{\Omega} G_{\Omega}(x, y)q(y)dy \text{ belongs to } C_0(\Omega).$$
(2.3)

Proof. Let $\varepsilon > 0$, $x_0 \in \overline{\Omega}$ and $q \in K(\Omega)$. From Lemma 2.1(i) there exists r > 0 such that

$$\sup_{z \in \Omega} \int_{\Omega \cap B(x_0, r)} G_{\Omega}(z, y) |q(y)| dy \le \frac{\varepsilon}{4}.$$

Assume that $x_0 \in \Omega$ and let $x \in B(x_0, \frac{r}{2}) \cap \Omega$, then

$$\begin{split} |Vq(x) - Vq(x_0)| &\leq 2 \sup_{z \in \Omega} \int_{\Omega \cap B(x_0, r)} G_{\Omega}(z, y) |q(y)| dy \\ &+ \int_{\Omega_0} |G_{\Omega}(x, y) - G_{\Omega}(x_0, y)| |q(y)| dy, \\ &\leq \frac{\varepsilon}{2} + \int_{\Omega_0} |G_{\Omega}(x, y) - G_{\Omega}(x_0, y)| |q(y)| dy, \end{split}$$

where $\Omega_0 = \Omega \cap B^c(x_0, r)$.

Or for all $x \in B(x_0, \frac{r}{2}) \cap \Omega$ and $y \in \Omega_0$, we have $|x - y| \ge \frac{r}{2}$. Therefore by (2.1) we deduce that

$$|G_{\Omega}(x,y) - G_{\Omega}(x_0,y)| \le c \frac{\delta(x)\delta(y)}{|x-y|^n} \le \frac{c}{r^n}\delta(y),$$

where c is some positive constant.

Now, since $(x, y) \mapsto G_{\Omega}(x, y)$ is continuous on $(B(x_0, \frac{r}{2}) \cap \Omega) \times \Omega_0$, we get by Lemma 2.1(ii) and Lebesgue's dominated convergence theorem,

$$\int_{\Omega_0} |G_{\Omega}(x,y) - G_{\Omega}(x_0,y)| \, |q(y)| dy \to 0 \quad \text{as } x \to x_0.$$

It follows that there exists $\delta > 0$ with $\delta < \frac{r}{2}$ such that if $x \in B(x_0, \delta) \cap \Omega$,

$$\int\limits_{\Omega_0} |G_\Omega(x,y) - G_\Omega(x_0,y)| \, |q(y)| dy \leq \frac{\varepsilon}{2}$$

Hence for $x \in B(x_0, \delta) \cap \Omega$, we have

$$|Vq(x) - Vq(x_0)| \le \varepsilon.$$

This implies that

$$\lim_{x \to x_0} Vq(x) = Vq(x_0).$$

If $x_0 \in \partial \Omega$ and $x \in B(x_0, \frac{r}{2}) \cap \Omega$, then we have

$$|Vq(x)| \leq \sup_{z \in \Omega} \int_{\Omega \cap B(x_0, r)} G_{\Omega}(z, y) |q(y)| dy + \int_{\Omega_0} G_{\Omega}(x, y) |q(y)| dy.$$

Now, since $\lim_{x\to x_0} G_{\Omega}(x,y) = 0$, for all $y \in \Omega_0$, we deduce by similar arguments as above that

$$\lim_{x \to x_0} Vq(x) = 0.$$

Hence $Vq \in C_0(\Omega)$.

Remark 2.4 (See [15] for $n \ge 3$ and [14] for n = 2). The function $x \mapsto (\delta(x))^{-\alpha}$ belongs to $K(\Omega)$ if and only if $\alpha < 2$.

Proposition 2.5. Let $D = \operatorname{diam}(\Omega)$, $\alpha < 2$ and $g \in \mathcal{B}^+(\Omega)$ satisfying

$$g(x) \approx \left(\delta(x)\right)^{-\alpha}, \text{ on } \Omega.$$

Then $x \to g(x) \in K(\Omega)$ and we have

$$Vg(x) \approx \begin{cases} \left(\delta(x)\right)^{2-\alpha}, & \text{if } 1 < \alpha < 2, \\ \left(\delta(x)\right)\log\left(\frac{2D}{\delta(x)}\right), & \text{if } \alpha = 1, \\ \delta(x), & \text{if } \alpha < 1. \end{cases}$$

Proof. See [13, Proposition 1].

3. MAIN RESULT

In order to study the semipositone BVP (1.1), we make the following assumptions.

(H1) a is a nontrivial function in $K^+(\Omega)$.

(H2) $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a measurable function with f(x, 0) = 0, for all $x \in \Omega$.

(H3) There exists a function $q \in K^+(\Omega)$ such that

$$|f(x,u) - f(x,v)| \le q(x) |u - v|$$
, for all $x \in \Omega$ and $u, v \in \mathbb{R}$.

Define

$$\omega(x) := \int_{\Omega} G_{\Omega}(x, y) a(y) dy, \quad x \in \Omega.$$
(3.1)

Then by Proposition 2.3, ω belongs to $C_0(\Omega)$ and by Lemma 2.1 (ii) and (1.7), ω satisfies in the distributional sense

$$\begin{cases} -\Delta\omega = a, & \text{in } \Omega, \\ \omega(x) = 0, & x \in \partial\Omega. \end{cases}$$
(3.2)

We recall that

$$\alpha_q := \sup_{x,y \in \Omega} \int_{\Omega} \frac{G_{\Omega}(x,z)G_{\Omega}(z,y)}{G_{\Omega}(x,y)} q(z)dz$$

and by Remark 2.2, $\alpha_q < \infty$.

Lemma 3.1. Let $p \in K^+(\Omega)$, then

$$V(p\omega)(x) = \int_{\Omega} G_{\Omega}(x, y) p(y) \omega(y) dy \le \alpha_p \omega(x), \text{ for all } x \in \Omega,$$
(3.3)

where ω is given by (3.1).

Proof. By the Fubini–Tonelli theorem, for all $x \in \Omega$, we have

$$V(p\omega)(x) = \int_{\Omega} a(z) \Big(\int_{\Omega} G_{\Omega}(x, y) G_{\Omega}(y, z) p(y) dy \Big) dz$$

$$\leq \alpha_p \int_{\Omega} G_{\Omega}(x, z) a(z) dz$$

$$= \alpha_p \omega(x).$$

Lemma 3.2. Let $h, g \in \mathcal{B}(\Omega)$ such that $0 \le h \le g$. Assume that $Vg \in C_0(\Omega)$, then $Vh \in C_0(\Omega)$.

Proof. From [18, pp. 19–20], Vh is a lower semicontinuous function in Ω . Since the function $Vg \in C_0(\Omega)$, then by writing,

$$Vg = Vh + V(g - h),$$

Vh becomes upper semicontinuous function in Ω . Hence $Vh \in C_0(\Omega)$.

Now we state our main result.

Theorem 3.3. Assume that (H1)–(H3) hold. Then there exists $\lambda^* > 0$, such that for $\lambda \in (0, \lambda^*)$, BVP (1.1) has a unique nonnegative solution $u \in C_0(\Omega)$ satisfying

$$\left(\frac{2\lambda^* - 2\lambda}{2\lambda^* - \lambda}\right)\omega(x) \le u(x) \le \left(\frac{2\lambda^*}{2\lambda^* - \lambda}\right)\omega(x), \quad \text{for all } x \in \overline{\Omega}. \tag{3.4}$$

Proof. Assume that (H1)-(H3) hold. Consider the Banach space

$$E_{\omega} = \Big\{ v \in C_0(\Omega) : \sup_{x \in \Omega} \frac{|v(x)|}{\omega(x)} < \infty \Big\},\$$

equipped with the norm

$$\|v\|_{\omega} := \sup_{x \in \Omega} \frac{|v(x)|}{\omega(x)}.$$

In particular, (E_{ω}, d) becomes a complete metric space, with

$$d(u,v) := \|u-v\|_{\omega}.$$

Set $\lambda^* := \frac{1}{2\alpha_q}$. Clearly $\lambda^* > 0$ and for $\lambda \in (0, \lambda^*)$, let

$$F_{\omega} = \Big\{ v \in E_{\omega} : \Big(\frac{1 - 2\lambda\alpha_q}{1 - \lambda\alpha_q} \Big) \omega(x) \le v(x) \le \Big(\frac{1}{1 - \lambda\alpha_q} \Big) \omega(x) \text{ for } x \in \overline{\Omega} \Big\}.$$

Since $\omega \in F_{\omega}$, we conclude that F_{ω} is a non-empty closed subset of (E_{ω}, d) and therefore (F_{ω}, d) is a complete metric space.

Define an operator T on F_{ω} by

$$Tv(x) = \omega(x) + \lambda \int_{\Omega} G_{\Omega}(x, y) f(y, v(y)) dy, \text{ for } x \in \overline{\Omega}.$$
(3.5)

We claim that $T(F_{\omega}) \subset F_{\omega}$. Indeed, from (H1)–(H3), for all $v \in F_{\omega}$, we have

$$|f(y,v(y))| \le \left(\frac{1}{1-\lambda\alpha_q}\right)q(y)\omega(y) \tag{3.6}$$

$$\leq \left(\frac{\|\omega\|_{\infty}}{1 - \lambda \alpha_q}\right) q(y). \tag{3.7}$$

Hence, by using (3.7), Proposition 2.3 and Lemma 3.2, we obtain that the function

$$x \to h(x) := \int_{\Omega} G_{\Omega}(x, y) f(y, v(y)) dy \in C_0(\Omega).$$

So $T(F_{\omega}) \subset C_0(\Omega)$.

For $v \in F_{\omega}$, we obtain by (3.6) and Lemma 3.1,

$$\frac{-\lambda\alpha_q}{1-\lambda\alpha_q}\omega(x) \le \lambda \int\limits_{\Omega} G_{\Omega}(x,y)f(y,v(y))dy \le \frac{\lambda\alpha_q}{1-\lambda\alpha_q}\omega(x).$$

Hence from (3.5), we conclude that $T(F_{\omega}) \subset F_{\omega}$.

Next, by using (3.5), (H3) and (3.3), we obtain for $v_1, v_2 \in F_{\omega}$

$$\begin{aligned} |Tv_1(x) - Tv_2(x)| &\leq \lambda \int_{\Omega} G_{\Omega}(x, y) \left| f(y, v_1(y)) - f(y, v_2(y)) \right| dy \\ &\leq \lambda \int_{\Omega} G_{\Omega}(x, y) q(y) \left| v_1(y) - v_2(y) \right| dy \\ &\leq \lambda d(v_1, v_2) \int_{\Omega} G_{\Omega}(x, y) q(y) \omega(y) dy \\ &\leq \lambda \alpha_q d(v_1, v_2) \omega(x). \end{aligned}$$

Hence,

$$d(Tv_1, Tv_2) \le \lambda \alpha_q d(v_1, v_2).$$

Since $\lambda \alpha_q < \frac{1}{2}$, then T is a contraction operator in F_{ω} . So, there exists a unique $u \in F_{\omega}$ such that

$$u(x) = \omega(x) + \lambda \int_{\Omega} G_{\Omega}(x, y) f(y, u(y)) dy, \quad \text{for } x \in \overline{\Omega}.$$
(3.8)

It remains to prove that u is a solution of BVP (1.1).

To this end, by using (3.7) and Lemma 2.1 (ii), we derive that the function $y \to f(y, u(y)) \in L^1_{\text{loc}}(\Omega)$ and from (3.8) the function $x \to \int_{\Omega} G_{\Omega}(x, y) f(y, u(y)) dy \in L^1_{\text{loc}}(\Omega)$.

Hence, from (1.7) and (3.2), we conclude that u is a solution of BVP (1.1) satisfying (3.4).

Remark 3.4. Let us consider the function $f(\cdot, u) = 2u + \sin u$. Note that f satisfies conditions (H2)-(H3) and we have

$$u \le f(\cdot, u) \le 3u, \text{ for } u \ge 0.$$
(3.9)

In this case problem (1.1) has no positive solution if λ is large.

Indeed, let φ_1 denote the normalized positive eigenfunction corresponding to the first eigenvalue λ_1 of $(-\Delta)$. Thus, by multiplication with φ_1 in (1.1) and integrating, we find

$$\lambda_1 \int_{\Omega} u\varphi_1 dx = \int_{\Omega} a\varphi_1 dx + \lambda \int_{\Omega} f(x, u)\varphi_1 dx > \lambda \int_{\Omega} u\varphi_1 dx$$

This relation shows that problem (1.1) has no positive solution if $\lambda \geq \lambda_1$.

Example 3.5. Let $\alpha, \beta < 2$. By Theorem 3.3, there exists $\lambda^* > 0$, such that for $\lambda \in (0, \lambda^*)$, the following BVP

$$\begin{cases} -\Delta u(x) = \frac{1}{(\delta(x))^{\alpha}} + \lambda \frac{1}{(\delta(x))^{\beta}} \sin(u(x)), & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega \end{cases}$$

has a unique nonnegative solution $u \in C_0(\Omega)$ satisfying

$$\left(\frac{2\lambda^* - 2\lambda}{2\lambda^* - \lambda}\right)\omega(x) \le u(x) \le \left(\frac{2\lambda^*}{2\lambda^* - \lambda}\right)\omega(x), \quad \text{for all } x \in \overline{\Omega}, \tag{3.10}$$

where $\omega(x) = V(\frac{1}{(\delta(\cdot))^{\alpha}})(x)$.

In particular, from (3.10) and Proposition 2.5, we deduce that

$$u(x) \approx \begin{cases} (\delta(x))^{2-\alpha}, & \text{if } 1 < \alpha < 2, \\ (\delta(x))\log(\frac{2D}{\delta(x)}), & \text{if } \alpha = 1, \\ \delta(x), & \text{if } \alpha < 1, \end{cases}$$

where $D = \operatorname{diam}(\Omega)$.

Example 3.6. Let $\gamma \in \mathbb{R}$, q and a be two functions in $K^+(\Omega)$. Then by Theorem 3.3, there exists $\lambda^* > 0$, such that for $\lambda \in (0, \lambda^*)$, the following BVP

$$\begin{cases} -\Delta u(x) = a(x) + \lambda q(x) \left(\delta(x)\right)^{\gamma} \left(\cos\left(\frac{u(x)}{\left(\delta(x)\right)^{\gamma}}\right) - 1\right), & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega, \end{cases}$$

has a unique nonnegative solution $u \in C_0(\Omega)$ satisfying

$$\left(\frac{2\lambda^* - 2\lambda}{2\lambda^* - \lambda}\right) V(a)(x) \le u(x) \le \left(\frac{2\lambda^*}{2\lambda^* - \lambda}\right) V(a)(x), \text{ for all } x \in \overline{\Omega}.$$

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this Research group NO (RG-1435-043). The authors would like to thank the anonymous referees for their careful reading of the paper.

REFERENCES

- G.A. Afrouzi, S.H. Rasouli, On positive solutions for some nonlinear semipositone elliptic boundary value problems, Nonlinear Anal. Model. Control 11 (2006), no. 4, 323–329.
- [2] V. Anuradha, D.D. Hai, R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc. 124 (1996), no. 3, 757–763.
- [3] R. Aris, Introduction to the Analysis of Chemical Reactors, Prentice Hall, New Jersey, 1965.
- [4] M. Bełdziński, M. Galewski, On solvability of elliptic boundary value problems via global invertibility, Opuscula Math. 40 (2020), no. 1, 37–47.
- K.J. Brown, R. Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), no. 1–2, 71–82.
- [6] A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3–4, 291–302.
- [7] K.L. Chung, Z. Zhao, From Brownian Motion to Schrödinger's Equation, Springer-Verlag, 1995.
- [8] G. Figueiredo, V.D. Rădulescu, Nonhomogeneous equations with critical exponential growth and lack of compactness, Opuscula Math. 40 (2020), no. 1, 71–92.
- [9] J.R. Graef, L. Kong, Positive solutions for third order semipositone boundary value problems, Appl. Math. Lett. 22 (2009), no. 8, 1154–1160.
- M. Ghergu, V.D. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), no. 2, 520–536.
- P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441–467.
- [12] R. Ma, S. Wang, Positive solutions for some semi-positone problems with nonlinear boundary conditions via bifurcation theory, Mediterr. J. Math. 17 (2020), Article no. 12.
- [13] H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), no. 9, 2941–2947.
- [14] H. Mâagli, L. Mâatoug, Singular solutions of a nonlinear equation in bounded domains of ℝ², J. Math. Anal. Appl. **270** (2002), 230–246.
- [15] H. Mâagli, M. Zribi, On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domain of \mathbb{R}^n , Positivity 9 (2005), no. 4, 667–686.
- [16] N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257–278.

- [17] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. Lond. Math. Soc. 52 (2020), no. 3, 546–560.
- [18] S.C. Port, C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, San Diego, 1978.
- [19] V.D. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and its Applications, 6. Hindawi Publishing Corporation, 2008.
- [20] M. Selmi, Inequalities for Green functions in a Dini–Jordan domain in ℝ², Potential. Anal. 13 (2000), no. 1, 81–102.
- [21] F. Toumi, Existence of positive solutions for nonlinear boundary-value problems in bounded domains of \mathbb{R}^n , Abstr. Appl. Anal. **2006** (2006), Article ID 95480.
- [22] J. Zhang, W. Zhang, V.D. Rădulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z. 301 (2022), no. 4, 4037–4078.
- [23] X. Zhang, L. Liu, Y. Wu, Positive solutions of nonresonance semipositone singular Dirichlet boundary value problems, Nonlinear Anal. 68 (2008), no. 1, 97–108.
- [24] W. Zou, X. Li, Existence results for nonlinear degenerate elliptic equations with lower order terms, Adv. Nonlinear Anal. 10 (2021), no. 1, 301–310.

Imed Bachar (corresponding author) abachar@ksu.edu.sa bhttps://orcid.org/0000-0003-3808-5786

King Saud University College of Science, Mathematics Department P.O. Box 2455, Riyadh 11451, Saudi Arabia

Habib Mâagli abobaker@kau.edu.sa, habib.maagli@fst.rnu.tn • https://orcid.org/0000-0002-7977-8039

King Abdulaziz University College of Sciences and Arts, Rabigh Campus, Department of Mathematics P.O. Box 344, Rabigh 21911, Saudi Arabia

Hassan Eltayeb hgadain@ksu.edu.sa bhttps://orcid.org/0000-0003-1820-9921

King Saud University College of Science, Mathematics Department P.O. Box 2455, Riyadh 11451, Saudi Arabia

Received: May 26, 2022. Revised: September 18, 2022. Accepted: September 19, 2022.