Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: In this study, modeling of superplastic deformation characteristic for metallic alloys was investigated using GTN failure criteria in viscoplastic framework. Design/methodology/approach: The proposed model studied the simultaneous effects of cavitation and deformation parameter and considered the effects of strain hardening, static and dynamic recoveries, and hydrostatic stress. This cavity based model was then implemented in a creep subroutine in ABAQUS 6.12 finite element software. Findings: Experimental results of Aluminum 5083 from different studies were used to verify the model and evaluate its reliability. Afterwards, numerical simulations for uniaxial tension were performed, and good agreement between experimental and modeling results was obtained. Research limitations/implications: This study showed that using a viscoplastic framework with a cavity criterion ensures more precise pressure-time algorithm, lower deformation time and better failure predictions. These capabilities provides forming more complex parts and different geometries. Accordingly, applying this model is recommended to predict the behaviour of other metallic superplastic alloys.
Wydawca
Rocznik
Tom
Strony
61--96
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Mechanical Engineering Department, Babol Noshirvani University of Technology, P.O. Box 47137-64568, Babol, Iran
Bibliografia
- [1] J. Pilling, Superplasticity in crystalline solids, Journal of the Institute of Metals (1989) 175-178.
- [2] M.A. Khaleel, H.M. Zbib, E.A. Nyberg, Constitutive modeling of deformation and damage in superplastic materials, International Journal of Plasticity 17 (2001) 277-296, doi: 10.1016/S0749-6419(00)00036X.
- [3] M.J. Tan, Cavitation and grain growth during superplastic forming, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 307-314.
- [4] D.H. Bae, A. K. Ghosh, Cavity growth during superplastic flow in an Al-Mg alloy: International Experimental study, Acta Materialia 50 (2002) 9931009, doi: 10.1016/S1359-6454(01)00399-8.
- [5] A Corigliano, S. Mariani, B. Orsatti, Identification of Gurson-Tvergaard material model parameters via Kalman filtering technique. 1, International Journal of Fracture 104 (2000) 349-373.
- [6] M.B. Taylor, H.M. Zbib, M.A. Khaleel, Damage and size effect during superplastic deformation, International Journal of Plasticity 18 (2002) 415-442, doi: 10.1016/S0749-6419(00)00106-6.
- [7] Z.P. Chen, P.F. Thomson, A study of post-form static and fatigue properties of superplastic 7475-SPF and 5083-SPF aluminium alloys, Journal of Materials Processing Technology 148 (2004) 204-219, doi: 10.1016/S0924-0136(03)00867-7.
- [8] M.A. Khaleel, K.I. Johnson, C.H. Hamilton, M.T. Smith, Deformation modeling of superplastic AA5083, International Journal of Plasticity 14 (1998) 1133-1154, doi: 10.1016/S0749-6419(98)00051-5.
- [9] Y. Xiang, S. Wu, Numerical simulation of cavity damage evolution in superplastic bulging process, Journal of Materials Processing Technology 116 (2001) 224-230, doi: 10.1016/S0924-0136(01)01026-3.
- [10] F.K. Abu-Farha, M.K. Khraisheh, Constitutive Modeling of Deformation-Induced Anisotropy in Superplastic Materials, Materials Science Forum 447448 (2004) 165-170.
- [11] C.H. Hamilton, H.M. Zbib, C.H. Johnson, S.K. Richter, Microstructural Coarsening and its Effect on Localization of Flow in Superplastic Deformation, Superplast. Advanced Materials (1991) 127-133.
- [12] M.K. Khraisheh, H.M. Zbib, C.H. Hamilton, A.E. Bayoumi, Constitutive modeling of superplastic deformation. Part I: Theory and experiments, International Journal of Plasticity 13 (1997) 143-164, doi: 10.1016/S0749-6419(97)00005-3.
- [13] M. Tokuda, T. Inaba, H. Ohigashi, A. Kurakake, Discussions on constitutive equations of superplastic 5083 aluminum alloy, International Journal of Mechanical Sciences 43 (2001) 2035-2046, doi: 10.1016/S0020-7403(01)00027-3.
- [14] F.P.E. Dunne, T. Kim, Modelling heterogeneous microstructures, inhomogeneous deformation and failure in superplasticity, Journal of Materials Processing Technology 80-81 (1998) 96-100, doi: 10.4028/www.scientific.net/MSF.304-306.177.
- [15] S. Hao, W. Brocks, The Gurson-TvergaardNeedleman-model for rate and temperature-dependent materials with isotropic and kinematic hardening, Computational Mechanics 20 (2014) 34-40, doi: 10.1007/s004660050213.
- [16] J. Lin, F.P.E. Dunne, Modelling grain growth evolution and necking in superplastic blow-forming, International Journal of Mechanical Sciences 43 (2001) 595-609, doi: 10.1016/S0020-7403(00)00055-2.
- [17] M. He, F. Li, Z. Wang, Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test, Chinese Journal of Aeronautics 24 (2011) 378-386, doi: 10.1016/S1000-9361(11)60045-9.
- [18] V. Uthaisangsuk, U. Prahl, S. Münstermann, W. Bleck, Experimental and numerical failure criterion for formability prediction in sheet metal forming, Computational Materials Science 43 (2008) 43-50, doi: 10.1016/j.commatsci.2007.07.036.
- [19] P.G. Kossakowski, An analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure, Archives of Civil and Mechanical Engineering 10 (2010) 15-39, doi: 10.1016/S1644-9665(12)60048-X.
- [20] D. Zhixiao, L. Miaoquan, L. Mabao, W. Shichun, Numerical computation of cavity damage and failure during the superplastic deformation of sheet metals, Journal of Materials Processing Technology 57 (1996) 298-303.
- [21] A. Oral, G. Anlas, J. Lambros, Determination of Gurson-Tvergaard-Needleman model parameters for failure of a polymeric material, International Journal of Damage Mechanics 21 (2012) 3-25, doi: 10.1177/1056789510385261.
- [22] V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture 17 (1981) 389-407.
- [23] V. Tvergaard, A. Needleman, Analysis of the cupcone fracture in a round tensile bar, Acta Materialia 32 (1984) 157-169.
- [24] P. Perzyna, Constitutive modeling of dissipative solids for postcritical behavior and fracture, Journal of Engineering Materials and Technology 106 (1984) 410-419.
- [25] J. Lin, Selection of material models for predicting necking in superplastic forming, International Journal of Plasticity 19 (2002) 469-481, doi: 10.1016/S0749-6419(01)00059-6.
- [26] H. Iwasaki, H. Hosokawa, T. Mori, T. Tagata, K. Higashi, Quantitative assessment of superplastic deformation behavior in a commercial 5083 alloy, Materials Science and Engineering A 252 (1998) 199202, doi: 10.1016/S0921-5093(98)00678-9.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee1c7120-e58e-4b67-a2b8-d983b3b6053f