PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of sodium dodecyl glycinate to the flotation of deslimed molybdenum tailings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By researching the nonmetallic minerals in molybdenum tailings, this paper investigated the possible application of sodium dodecyl glycinate (SD) to deslimed tailings as an alternative to the large dosage and complex flotation reagent systems of conventional combination collectors (dodecylamine and sodium oleate). The floatability differences of nonmetallic minerals under different SD dosages were analyzed via pure mineral flotation experiments, and the adsorption behavior of SD onto different mineral surfaces was analyzed by quantum chemical calculations. The results of the calculated adsorption structures and energies of the different mineral surfaces show that SD was chemically adsorbed onto the albite (001), phlogopite (010), diopside (110), dolomite (101), calcite (104) and calcite (101) surfaces and that physical adsorption occurred at the phlogopite (001) surface. The corresponding adsorption trend was dolomite > calcite > diopside > albite > phlogopite. These results theoretically verify the feasibility of applying SD to the flotation of nonmetallic minerals in tailings and provide a basis for the selection of inhibitors needed for separating phlogopite from other minerals. In the flotation of deslimed molybdenum tailings, the recoveries of the nonmetallic minerals achieved with SD were close to those in pure mineral flotation, which was greater than the recoveries achieved with dodecylamine and sodium oleate (NaOl), and the dosage was reduced by approximately 25%.
Rocznik
Strony
1120--1131
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China
autor
  • College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China
  • College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
autor
  • College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China
autor
  • College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China
Bibliografia
  • ASOKAN P., MOHINI S., SHYAM R., 2007. Solid wastes generation in India and their recycling potential in building materials. Building and Environment, 42, 2311-2320.
  • CHAO L., HENGHU S., ZHONGLAI Y., LONGTU L., 2010. Innovative methodology for comprehensive utilization of iron ore tailings Part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material. Journal of Hazardous Materials, 174, 78–83.
  • DIANZUO W., 2017. Flotation reagents: applied surface chemistry on minerals flotation and energy resources beneficiation. Metallurgical Industry Publishing Company, Inc.
  • DOWNS R., HAZEN R., FINGER L., 1994. The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al-Si ordering P=3.78 GPa Note: sample is from Crete. American Mineralogist, 79, 1042–1052.
  • GOOG Z., LIAO L., LV G., WANG X., 2016. A simple method for physical purification of bentonite. Applied Clay Science, 119, 294–300.
  • GUANGYI L., XIANGLIN Y., HONG Z., 2017. Molecular design of flotation collectors: a recent progress. Advances in Colloid and Interface Science, 246, 181–195.
  • HAYDN H., 2000. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207–221.
  • JAEWOOK L., HONGJIAN Z., JAEBEOM L. 2011. Small molecule induced self-assembly of Au nanoparticles. Journal of Materials Chemistry, 21, 16935–16942.
  • JEAN, F., 2008. Adsorption and polymerization of amino acids on mineral surfaces: a review. Origins of Life and Evolution of Biospheres, 38, 211–242.
  • LUNDAGER H., CHRISTENSEN H., GOTTLIEB C., 1978. Stability constants of copper (II), zinc, manganese(II), calcium, and magnesium complexes of N-(Phosphonomethyl) glycine (Glyphosate). Acta Chemica Scandinavica, 32, 79-83.
  • MAJID E., MEHDI I., MEHDI G., 2011. Influence of important factors on flotation of zinc oxide mineral using cationic, anionic and mixed (cationic/anionic) collectors. Minerals Engineering, 24, 1402–1408.
  • PABST A., 1955. Redescription of the single layer structure of the micas. American Mineralogist, 40, 967-974.
  • RUICHEN R., QIANWEI Z., XIULAN W., CAIXIA L., QIANQIAN S., YUPENG F., 2015. Experimental study on calcite and dolomite separation from molybdenum tailings. 36,72-74.
  • ROMAIN B., KRISTER H., 2001. Physical chemical characteristics of dicarboxylic amino acid-based surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 391, 32–41.
  • STEINFINK H., SANS F., 1959. Refinement of the crystal structure of dolomite. American Mineralogist, 44, 679–682.
  • THOMPSON R., DOWNS R., 2008. The crystal structure of diopside at pressure to 10 GPa. American Mineralogist, 93, 177–186.
  • VIDYADHAR A., NEHA K., BHAGAT R., 2011. Adsorption mechanism of mixed collector systems on hematite flotation. Minerals Engineering, 26, 102–104.
  • VIMAL K. S., MADHU G., M. N. SRIVASTAVA, 1996. Synthesis and characterization of complexes of copper(II), nickel(II), cobalt(II) and zinc(II) with histidine and glycine or alanine. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 26, 1661-1676.
  • WANG B., PENG Y., SUE V., 2014. Effect of saline water on the flotation of fine and coarse coal particles in the presence of clay minerals. Minerals Engineering, 66, 145–151.
  • WYCKOFF R., 1920. The crystal structure of some carbonates of the calcite group. American Journal of Science, 50, 317–360.
  • YUSHUANG Z., JIANGUANG Z., 1996. Chemical principles of flotation reagents. Central-South Industry University Publishing Company, Inc.
  • QIANGWEI Z., RUICHEN R., CAIXIA L., 2013. Experimental Research on Recovery of Phlogopite from Molybdenum Tailings. Non-Metallic Mines, 38, 43-45.
  • ZHEN L., ZE S., JIANGUO Y., 2015. Investigation of dodecylammonium adsorption on mica, albite and quartz surfaces by QM/MM simulation. Molecular Physics, 113, 3423–3430.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edfdf836-a1df-4192-954d-b110f8f3333b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.