PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Habitat suitability models of five keynote Bulgarian Black Sea fish species relative to specific abiotic and biotic factors

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past few years, predicting species spatial distributions has been recognized as a powerful tool for studying biological invasions in conservation biology and planning, ecology, and evolutionary biology. Species spatial distribution models (SDMs) are used extensively for assessing the effects of changes in habitat suitability, the impacts of climate change, and the realignment of the existing conservation priorities. SDMs relate known patterns of species occurrences to a specific set of environmental conditions. Accordingly, we have used MaxEnt SDM tool in order to provide habitat suitability models of 5 keynote fish species: European sprat (Sprattus sprattus L.), red mullet (Mullus barbatus, L.), horse mackerel (Trachurus mediterraneus, L.), bluefish (Pomatomus saltatrix, L.) and whiting (Merlangius merlangus, L.), inhabiting the Bulgarian region of the Black Sea. Presence-only (PO) data collected by pelagic surveys performed between 2017 and 2019 was further utilized to link known species occurrence localities with selected abiotic factors, such as surface sea temperature and salinity, dissolved oxygen, and speed of currents. Biotic interactions were also considered for fitting the patterns of habitat suitability models. The SDMs, obtained from the present research study, prove to have satisfactory predictive accuracy to be further implemented for conservation measures and planning, stock management policy-making, or ecological forecasting.
Czasopismo
Rocznik
Strony
665--674
Opis fizyczny
Bibliogr., 67 poz., rys., tab., wykr.
Twórcy
  • Institute of Oceanology “Fridtjof Nansen”, Bulgarian Academy of Sciences, Varna, Bulgaria
  • Institute of Oceanology “Fridtjof Nansen”, Bulgarian Academy of Sciences, Varna, Bulgaria
  • Institute of Oceanology “Fridtjof Nansen”, Bulgarian Academy of Sciences, Varna, Bulgaria
  • Institute of Oceanology “Fridtjof Nansen”, Bulgarian Academy of Sciences, Varna, Bulgaria
  • Institute of Oceanology “Fridtjof Nansen”, Bulgarian Academy of Sciences, Varna, Bulgaria
Bibliografia
  • 1. Aleksandrov, B., Arashkevich, E., Gubanova, A., Korshenko, A., 2020. Black Sea monitoring guidelines: mesozooplankton. Dnipro, Seredniak T.K., 34 pp.
  • 2. Araújo, M.B., Luoto, M., 2007. The importance of biotic interactions for modeling species distributions under climate change. Global Ecol. Biogeogr. 16 (6), 743-753. https://doi.org/10.1111/j.1466-8238.2007.00359.x
  • 3. Bal, H., Telat, Y., Dilek, T., 2020. Diet composition of bluefish Pomatomus saltatrix (Linnaeus, 1766) in the Sea of Marmara. Bull. Mar. Sci. 9 (1), 46-50. https://doi.org/10.33714/masteb.675929
  • 4. Brotons, L., Thuiller, W., Araújo, M.B., Hirzel, A.H., 2004. Presence absence versus presence-only modeling methods for predicting bird habitat suitability. Ecography 27 (4), 437-448. https://doi.org/10.1111/j.0906-7590.2004.03764.x
  • 5. Brown, J.H., 1984. On the relationship between abundance and distribution of species. Am. Nat. 124 (2), 255-279. https://doi.org/10.1086/284267
  • 6. Bryn, A., Bekkby, T., Rinde, E., Gundersen, H., Halvorsen, R., 2021. Reliability in distribution modeling—A synthesis and step-by-step guidelines for improved practice. Front. Ecol. Evol. 9, 658713. https://doi.org/10.3389/fevo.2021.658713
  • 7. Bueno de Mesquita, C.P., King, A.J., Schmidt, S.K., Farrer, E.C., Suding, K.N., 2016. Incorporating biotic factors in species distribution modeling: are interactions with soil microbes important? Ecography 39 (10), 970-980. https://doi.org/10.1111/ecog.01797
  • 8. Caddy, J.F., 2008. Recent experience and future options for fisheries assessment and management in the Black Sea: A GFCM perspective. In: General Fisheries Commission for the Mediterranean. Meeting document GFCM/XXXII/2008/Dma, 4, 72-76.
  • 9. Capet, A., Meysman, F.J., Akoumianaki, I., Soetaert, K., Grégoire, M., 2016. Integrating sediment biogeochemistry into 3D oceanic models: a study of benthic-pelagic coupling in the Black Sea. Ocean Model. 101, 83-100. https://doi.org/10.1016/j.ocemod.2016.03.006
  • 10. Cayuela, L., Golicher, D.J., Newton, A.C., Kolb, M., De Alburquerque, F.S., Arets, E.J.M.M., Alkemade, J.R.M., Perez, A.M., 2009. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2 (3), 319-352. https://doi.org/10.1177/194008290900200304
  • 11. Ceyhan, T., Akyol, O., Ayaz, A., Juanes, F., 2007. Age, growth, and reproductive season of Bluefish (Pomatomus saltatrix) in the Marmara region. Turkey. ICES J. Mar. Sci. 64 (3), 531-536. https://doi.org/10.1093/icesjms/fsm026
  • 12. Clavel-Henry, M., Piroddi, C., Quattrocchi, F., Macias, D., Christensen, V., 2020. Spatial Distribution and Abundance of Mesopelagic Fish Biomass in the Mediterranean Sea. Front. Mar. Sci. 7, 1136. https://doi.org/10.3389/fmars.2020.573986
  • 13. Clément, L., Catzeflis, F., Richard-Hansen, C., Barrioz, S., de Thoisy, B., 2014. Conservation interests of applying spatial distribution modeling to large vagile Neotropical mammals. Trop. Conserv. Sci. 7 (2), 192-213. https://doi.org/10.1177/194008291400700203
  • 14. Coops, N.C., Waring, R.H., Schroeder, T.A., 2009. Combining a generic process-based productivity model and a statistical classification method to predict the presence and absence of tree species in the Pacific Northwest. USA. Ecol. Model. 220 (15), 1787-1796. https://doi.org/10.1016/j.ecolmodel.2009.04.029
  • 15. Daskalov, G.M., 2002. Overfishing drives a trophic cascade in the Black Sea. Mar. Ecol. Prog. Ser. 225, 53-63. https://doi.org/10.3354/meps225053
  • 16. Dormann, C.F., Bobrowski, M., Dehling, D.M., Harris, D.J., Hartig, F., Lischke, H., Moretti, M.D., Pagel, J., Pinkert, S., Schleuning, M., Schmidt, S.I., Sheppard, C.S., Steinbauer, M.J., Zeuss, D., Kraan, C., 2018. Biotic interactions in species distribution modeling: 10 questions to guide interpretation and avoid false conclusions. Global Ecol. Biogeogr. 27 (9), 1004-1016. https://doi.org/10.1111/geb.12759
  • 17. Druon, J.N., 2017. Ocean Productivity index for Fish in the Arctic: First assessment from satellite-derived plankton-to-fish favourable habitats, EUR 29006 EN, JRC109947. Publications Office of the European Union, Luxembourg, 24. https://doi.org/10.2760/28033
  • 18. Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40, 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  • 19. FAO, 2020. The State of Mediterranean and Black Sea Fisheries. General Fisheries Commission for the Mediterranean, Rome, Italy, 172 pp. https://doi.org/10.4060/cb2429en
  • 20. Flores-Tolentino, M., García-Valdés, R., Saénz-Romero, C., Ávila-Díaz, I., Paz, H., Lopez-Toledo, L., 2020. Distribution and conservation of species is misestimated if biotic interactions are ignored: the case of the orchid Laelia speciosa. Sci. Rep. 10 (1), 1-14. https://doi.org/10.1038/s41598-020-63638-9
  • 21. Georgieva, Y.G., Daskalov, G.M., 2019. Shift in growth of an apex marine predator: Bluefish Pomatomus saltatrix (L., 1766) (Perciformes: Potamonidae) in relation to changes in feeding. Acta Zool. Bulgar. 71 (1), 63-72.
  • 22. Georgieva, Y.G., Daskalov, G.M., Klayn, S.L., Stefanova, K.B., Stefanova, E.S., 2019. Seasonal diet and feeding strategy of horse mackerel Trachurus mediterraneus (Steindachner, 1868) (Perciformes: Carangidae) in the South-Western Black Sea. Acta Zool. Bulgar. 71, 201-210.
  • 23. Giannini, T.C., Chapman, D.S., Saraiva, A.M., Alves-dos-Santos, I., Biesmeijer, J.C., 2013. Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography 36 (6), 649-656. https://doi.org/10.1111/j.1600-0587.2012.07191.x
  • 24. Godsoe, W., Franklin, J., Blanchet, F.G., 2017. Effects of biotic interactions on modeled species’ distribution can be masked by environmental gradients. Ecol. Evol. 7 (2), 654-664. https://doi.org/10.1002/ece3.2657
  • 25. Grégoire, M., Raick, C., Soetaert, K., 2008. Numerical modeling of the central Black Sea ecosystem functioning during the eutrophication phase. Prog. Oceanogr. 76 (3), 286-333. https://doi.org/10.1016/j.pocean.2008.01.002
  • 26. Grégoire, M., Soetaert, K., 2010. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: A biogeochemical model of the whole water column coupling the oxic and anoxic parts. Ecol. Model. 221 (19), 2287-2301. https://doi.org/10.1016/j.ecolmodel.2010.06.007
  • 27. Guisan, A., Thuiller, W., 2005. Predicting species distribution: of-fering more than simple habitat models. Ecol. Lett. 8 (9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
  • 28. Hernandez, P.A., Graham, C.H., Master, L.L., Albert, D.L., 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29 (5), 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
  • 29. Ivanov, L., Beverton, R.J.H., 1985. In: The fisheries resources of the Mediterranean Pt. 2: Black Sea, FAO, 60, 147 pp.
  • 30. Keskin, C., Ulman, A., Zylich, K., Raykov, V., Daskalov, G.M., Pauly, D., Zeller, D., 2017. The marine fisheries in Bulgaria’s Exclusive Economic Zone, 1950—2013. Front. Mar. Sci. 4 (53), 1-10. https://doi.org/10.3389/fmars.2017.00053
  • 31. Lany, N.K., Zarnetske, P.L., Gouhier, T.C., Menge, B.A., 2017.Incorporating context dependency of species interactions in species distribution models. Integr. Comp. Biol. 57 (1), 159-167. https://doi.org/10.1093/icb/icx057
  • 32. Lawler, J.J., Wiersma, Y.F., Huettmann, F., 2011. Using species distribution models for conservation planning and ecological fore-casting. In: Drew, C.A., Wiersma, Y.F., Huettmann, F. (Eds.), Predictive species and habitat modeling in landscape ecology. Springer, New York, 271-290. https://doi.org/10.1007/978-1-4419-7390-0_14
  • 33. Leach, K., Montgomery, W.I., Reid, N., 2016. Modeling the influence of biotic factors on species distribution patterns. Ecol. Model. 337, 96-106. https://doi.org/10.1016/j.ecolmodel.2016.06.008
  • 34. Lennox, R.J., Chapman, J.M., Souliere, C.M., Tudorache, C., Wikelski, M., Metcalfe, J.D., Cooke, S.J., 2016. Conservation physiology of animal migration. Conserv. Physiol. 4 (1), cov072. https://doi.org/10.1093/conphys/cov072
  • 35. Lobo, J.M., Jiménez-Valverde, A., Hortal, J., 2010. The uncertain nature of absences and their importance in species distribution modeling. Ecography 33 (1), 103-114. https://doi.org/10.1111/j.1600-0587.2009.06039.x
  • 36. MacKenzie, B.R., Horbowy, J., Köster, F.W., 2008. Incorporating environmental variability in stock assessment: predicting recruitment, spawner biomass, and landings of Sprat (Sprattus sprattus) in the Baltic Sea. Can. J. Fish. Aquat. Sci. 65 (7), 1334-1341. https://doi.org/10.1139/F08-051
  • 37. Madec, G., 2016. NEMO — The OPA9 Ocean Engine: Note du Pole de Modelisation Institut Pierre-Simon Laplace No. 27, https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf (last ac-cess 11 November 2021).
  • 38. Mansor, S., Tan, C.K., Ibrahim, H.M., Shariff, A.R.M., 2001. Satellite fish forecasting in south China sea. 22nd Asian Conference on Remote Sensing 5 (9).
  • 39. Maureaud, A., Hodapp, D., van Denderen, P.D., Hillebrand, H., Gislason, H., Spaanheden Dencker, T., Beukhof, E., Lindegren, M., 2019. Biodiversity—ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. R. Soc. B. 286 (1906),20191189. https://doi.org/10.1098/rspb.2019.1189
  • 40. Merow, C., Smith, M.J., Silander Jr, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36 (10), 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  • 41. Mihneva, V., Raykov, V., Stefanova, K., Grishin, A., 2015. Sprat feeding in front of the Bulgarian Black Sea coast. In: 12th International Conference on the Mediterranean Coastal Environment, MEDCOAST, 2015, 431-442.
  • 42. Onay, H., Dalgic, G., 2019. Seasonal changes in the food spectrum and day-time rhythm of feeding in red mullet Mullus barbatus (Linnaeus, 1758) in the Southeast Black Sea. Fresenius Environ. Bull. 28 (4), 2671-2678.
  • 43. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres Jr, F., 1998. Fishing down marine food webs. Science 279 (5352), 860-863. https://doi.org/10.1126/science.279.5352.860
  • 44. Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., Zeller, D., 2002. Towards sustainability in world fisheries. Nature 418 (6898),689-695. https://doi.org/10.1038/nature01017
  • 45. Pauly, D., Watson, R., 2005. Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity. Philos. T. Roy. Soc. B. 360 (1454), 415-423. https://doi.org/10.1098/rstb.2004.1597
  • 46. Pécuchet, L., Nielsen, J.R., Christensen, A., 2015. Impacts of the local environment on recruitment: a comparative study of North Sea and Baltic Sea fish stocks. ICES J. Mar. Sci. 72 (5), 1323-1335. https://doi.org/10.1093/icesjms/fsu220
  • 47. Petipa, T.S., 1959. On average weight of main forms of zooplankton. Annals of Sevastopol Biological Station (5) 13-24.
  • 48. Phillips, S.J., 2017. A brief tutorial on Maxent, http://biodiversityinformatics.amnh.org/open_source/maxent/ (last accessed on 18.01.2021).
  • 49. Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E., 2017. Opening the black box: An open-source release of Maxent. Ecography 40 (7), 887-893. https://doi.org/10.1111/ecog.03049
  • 50. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190 (3—4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • 51. Preuss, G., Padial, A.A., 2021. Increasing reality of species distribution models of consumers by including its food resources. Neotrop. Biol. Conserv. 16 (3), 411-425. https://doi.org/10.3897/neotropical.16.e64892
  • 52. Prodanov, K., Mikhailov, K., Daskalov, G., Maxim, C., Chaschchin, A., Arkhipov, A., Shyakhov, V., Ozdamar, E., 1997. Environmental management of fish resources in the Black Sea and their rational exploitation. In: GFCM Studies and Reviews, 68. FAO, Rome, 178 pp
  • 53. Rose, K.A., Gutiérrez, D., Breitburg, D., Conley, D., Craig, J.K., Halley, E., Froehlich, R., Kripa, J.V., Mbaye, B.C., Mohamed, K.S., Padua, S., Prema, D., 2019. Impacts of ocean deoxygenation on fisheries. In: Laffoley, D., Baxter, J.M. (Eds.), Ocean deoxygenation: Everyone’s problem — Causes, impacts, consequences and solutions. IUCN Gland, Switzerland, 562 pp.
  • 54. Schickele, A., Goberville, E., Leroy, B., Beaugrand, G., Hattab, T., Francour, P., Raybaud, V., 2021. European small pelagic fish distribution under global change scenarios. Fish. Fish. 22 (1), 212-225. https://doi.org/10.1111/faf.12515
  • 55. Shiganova, T.A., Anninsky, B., Finenko, G.A., Kamburska, L., Mutlu, E., Mihneva, V., Stefanova, K., 2021. Black Sea Monitoring Guidelines. In: Macroplankton (Gelatinous plankton). Dnipro, Seredniak T.K., 38 pp.
  • 56. Smoliński, S., 2019. Incorporation of optimal environmental signals in the prediction of fish recruitment using random forest algorithms. Can. J. Fish. Aquat. Sci. 76 (1), 15-27. https://doi.org/10.1139/cjfas- 2017- 0554
  • 57. Sparre, P., Venema, S.C. 1998. Introduction to tropical fish stock assessment, Part 1. Manual. FAO Fisheries Technical Paper. No. 306.1, Rev. 2. Rome, FAO, 407 pp.
  • 58. Srivastava, V., Lafond, V., Griess, V.C., 2019. Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev. 14 (20), 1-13. https://doi.org/10.1079/PAVSNNR201914020
  • 59. Støa, B., Halvorsen, R., Mazzoni, S., Gusarov, V.I., 2018. Sampling bias in presence-only data used for species distribution modeling: theory and methods for detecting sample bias and its effects on models. Sommerfeltia 38, 1-53. https://doi.org/10.2478/som-2018-0001
  • 60. Stokland, J.N., Halvorsen, R., Støa, B., 2011. Species distribution modeling — effect of design and sample size of pseudo-absence observations. Ecol. Model. 222, 1800-1809. https://doi.org/10.1016/j.ecolmodel.2011.02.025
  • 61. Thuiller, W., Albert, C.H., Dubuis, A., Randin, C., Guisan, A., 2010. Variation in habitat suitability does not always relate to variation in species’ plant functional traits. Biol. Lett. 6 (1), 120-123. https://doi.org/10.1098/rsbl.2009.0669
  • 62. Watson, J.W., Boyd, R., Dutta, R., Vasdekis, G., Walker, N.D., Roy, S., Everitt, R., Hyder, K., Sibly, R.M., 2022. Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass. Ecol. Model. 466, 109878,. 1-11. https://doi.org/10.1016/j.ecolmodel.2022.109878.
  • 63. Williams, P.H., Araújo, M.B., 2000. Using probability of persistence to identify important areas for biodiversity conservation. P. Roy. Soc. B-Biol. 267 (1456), 1959—1966. https://doi.org/10.1098/rspb.2000.1236
  • 64. Yankova, M.H., Raykov, V.S., Frateva, P.B., 2008. Diet composition of horse mackerel, Trachurus mediterraneus ponticus Aleev, 1956 (Osteichthyes: Carangidae) in the Bulgarian Black Sea waters. Turk. J. Fish. Aquat. Sc. 8 (2), 321-327.
  • 65. Zaitsev, Y., 2008. An introduction to Black Sea ecology. Smil. Publ. Agency Ltd., Odessa, 228 pp.
  • 66. Zaitsev, Y., Mamaev, V., 1997. Marine Biological Diversity in the Black Sea: a Study of Change and Decline. Call number. DP(05)/B627/v.3. Black Seas Environmental Series. United Nations Publ, New York, USA, 208 pp.
  • 67. Zimmermann, N.E., Edwards Jr., T.C., Graham, C.H., Pearman, P.B., Svenning, J.C., 2010. New trends in species distribution modeling. Ecography 33 (6), 985-989. https://doi.org/10.1111/j.1600-587.2010.06953.x
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edf74db3-08b7-4d10-9012-daaeb576c895
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.