Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A novel polynitro compound, 2,2’-bis(trinitromethyl)-5,5’-azo- 1,2,3,4-tetrazole, was designed and investigated at the DFT-B3LYP/6-31G(d) level. Its properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure, were predicted. This compound is most likely to crystallize in the P21 space group, and the corresponding cell parameters are Z = 2, a = 5.46 Å, b = 9.72 Å, c = 14.05 Å, α = 90°, β = 90°, γ = 90°. In addition, the detonation velocity and pressure were also estimated by using the empirical Kamlet-Jacobs equations, and were predicted to be 8.28 km/s and 31.61 GPa respectively. The oxygen balance of this compound is +13.79%, which indicates that it could serve as an oxidizer. Bond dissociation energy calculations show that the C(13)-N(21)O2 and C(14)-N(30)O2 bonds are the locations of thermal decomposition and that this compounds meets the thermal stability requirements as an exploitable explosive. Keywords: polynitro, electronic structure, thermodynamic properties, crystal structure, detonation performance, stability.
Rocznik
Tom
Strony
325--338
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
autor
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
autor
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
autor
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
autor
- Institute of Chemical Materials, Chinese Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
autor
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
Bibliografia
- [1] Fischer N., Izsàk, D., Klapötke T.M., Rappenglück S., Stierstorfer J., Nitrogen-rich 5,5’-Bistetrazolates and Their Potential Use in Propellant Systems: a Comprehensive Study, Chem.-Eur. J., 2012, 18(13), 4051-4062.
- [2] Ghule V.D., Sarangapani R., Jadhav P.M., Tewari S.P., Quantum-chemical Investigation of Substituted s-Tetrazine Derivatives as Energetic Materials, Bull. Korean. Chem. Soc., 2012, 33(2), 564-570.
- [3] Lin H., Zhu S.G., Zhang L., Peng X.H., Chen P.Y., Li H.Z., Intermolecular Interactions, Thermodynamic Properties, Crystal Structure, and Detonation Performance of HMX/NTO Cocrystal Explosive, Int. J. Quantum Chem., 2013, 113(10), 1591-1599.
- [4] Lin H., Zhu S.G., Zhang L., Peng X.H., Li H.Z., Synthesis and First Principles Investigation of HMX/NMP Cocrystal Explosive, J. Energ. Mater., 2013, 31(4), 261-272.
- [5] Bushuyev O.S., Brown P., Maiti A., Gee R.H., Peterson G.R., Weeks B.L., Hope- Weeks L.J., Ionic Polymers as a New Structural Motif for High-energy-density Materials, J. Am. Chem. Soc., 2012, 134(3), 1422-1425.
- [6] Klapötke T.M., Sabate C.M., Bistetrazoles: Nitrogen-rich, High-performing, Insensitive Energetic Compounds, Chem. Mater., 2008, 20(11), 3629-3637.
- [7] Gobel M., Karaghiosoff K., Klapötke T.M.; Piercey D.G., Stierstorfer J., Nitrotetrazolate-2N-oxides and the Strategy of N-oxide Introduction, J. Am. Chem. Soc., 2010, 132(48), 17216-17226.
- [8] Huang Y.G., Gard G.L., Shreeve J.M., One-pot Syntheses of 1,2,3-Triazoles Containing a Pentafluorosulfanylalkyl Group via Click Chemistry, Tetrahedron Lett., 2010, 51(52), 6951-6954.
- [9] Gobel M., Klapotke T.M., Development and Testing of Energetic Materials: the Concept of High Densities Based on the Trinitroethyl Functionality, Adv. Funct. Mater., 2009, 19(3), 347-365.
- [10] Thottempudi V., Gao H.X., Shreeve J.M., Trinitromethyl-substituted 5-Nitro- or 3-Azo-1,2,4-triazoles: Synthesis, Characterization, and Energetic Properties, J. Am. Chem. Soc., 2011, 133(16), 6464-6471.
- [11] Thottempudi V., Gao H.X., Shreeve J.M., Synthesis and Promising Properties of a New Family of High-density Energetic Salts of 5-Nitro-3-trinitromethyl-1H- 1,2,4-triazole and 5,5’-Bis(trinitromethyl)-3,3’-azo-1H-1,2,4-triazole, J. Am. Chem. Soc., 2011, 133(49), 19982-19992.
- [12] Lin H., Chen P.Y., Zhu S.G., Zhang L., Peng X.H., Li K., Li H.Z., Theoretical Studies on the Thermodynamic Properties, Densities, Detonation Properties, and Pyrolysis Mechanisms of Trinitromethyl-substituted Aminotetrazole Compounds, J. Mol. Model., 2013, 19(6), 2413-2422.
- [13] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T. Jr., Kudin K.N., Burant J.C., Millam J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Oritz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stenfanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian03; Gaussian, Inc.: Pittsburgh, PA, 2003.
- [14] Materials Studio Blends Module, Version 4.4; Software for Miscibility Estimation: Theory in Blends, Accelrys Software Inc.: San Diego, CA, 2008.
- [15] Xu X.J., Xiao H.M., Ju X.H., Gong X.D., Zhu W.H., Computational Studies on Polynitrohexaazadmantanes as Potential High Energy Density Materials, J. Phys. Chem. A, 2006, 110(17), 59290-5933.
- [16] Barber J., Hooks D.E., Funk D.J., Temperature-dependent Far-infrared Spectra of Single Crystals of High Explosives Using Tetrahertz Time-domain Spectroscopy, J. Phys. Chem. A, 2005, 109(15), 3501-3505.
- [17] Xu X.J., Xiao H.M., Gong X.D., Ju X.H., Chen Z.X., Theoretical Studies on the Vibrational Spectra, Thermodynamic Properties, Detonation Performances, and Pyrolysis Mechanisms for Polynitroadamantanes, J. Phys. Chem. A, 2005, 109(49), 11268-11274.
- [18] Scott A.P., Random L., Harmonic Vibrational Frequencies: an Evaluation of Hartree-fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem., 1996, 100(41), 16502- 16513.
- [19] Kamlet M.J., Jabcobs S.J., Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of CHNO Explosives, J. Chem. Phys., 1968, 48(1), 23.
- [20] Ma H.X., Song J.R., Zhao F.Q., Gao H.X., Hu R.Z., Crystal Structure, Safety Performance and Density-functional Theoretical Investigation of 2,6-Diamino- 3,5-dinitropyazine-1-oxide (LLM-105), Chin. J. Chem., 2008, 26(11), 1997-2002.
- [21] Oyumi Y., Rheingold A.L., Brill T.B., Thermal Decomposition of Energetic Materials XXIV. A Comparison of the Crystal Structures, IR Spectra, Thermolysis and Impact Sensitivities of Nitroguanidine and Trinitroethylnitroguanidine, Propellants Explos. Pyrotech., 1987, 12(2), 46-52.
- [22] Politzer P., Boyd S., Molecular Dynamics Simulations of Energetic Solids, Struct. Chem., 2002, 13, 105-113.
- [23] Wu C.J., Yang L.H., Fried L.E., Electronic Structure of Solid 1,3,5-Triamino-2,4,6- trinitrobenzene under Uniaxial Compression: Possible Role of Pressure-induced Metallization in Energetic Materials, Phys. Rev. B, 2003, 67(23), 235101.
- [24] Wei T., Zhu W.H., Zhang X.W., Li Y.F., Xiao H.M., Molecular Design of 1,2,4,5-Tetrazine-based High-energy Density Materials, J. Phys. Chem. A, 2009, 113(33), 9404-9412.
- [25] Badders N.R., Wei C., Aldeeb A.A., Rogers W.J.; Mannan M.S., Predicting the Impact Sensitivities of Polynitro Compounds Using Quantum Chemical Descriptor, J. Energ. Mater., 2006, 24(1), 17-33.
- [26] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formations of Energetic Materials Using Mechanical Calculations, J. Phys. Chem. A, 2006, 110(3), 1005- 1013.
- [27] Zhang J., Xiao H.M., Gong X.D., Theoretical Studies on Heats of Formation for Polynitrocubanes Using the Density Functional Theory B3LYP Method and Semiempirical MO Methods, J. Phys. Org. Chem., 2001, 14(8), 583-588.
- [28] Chen Z.X., Xiao J.M., Xiao H.M., Chiu Y.N., Studies on Heats of Formation for Tetrazole Derivatives with Density Functional Theory B3LYP Method, J. Phys. Chem. A, 1999, 103(40), 8062-8066.
- [29] Zepeda-Ruiz L.A., Maiti A., Gee R., Gilmer G.H., Weeks B.L., Size and Habit Evolution of PETN Crystals – a Lattice Monte Carlo Study, J. Cryst. Growth, 2006, 219( 2), 461-467.
- [30] Ravi P., Gore G.M., Tewari S.P., Sikder A.K., A DFT Study of Aminonitroimidazoles, J. Mol. Model., 2012, 18(2), 597-605.
- [31] Zhang J.Y., Du H.C., Wang F., Gong X.D., Ying S.J., Crystal Structure, Detonation Performance, and Thermal Stability of a New Polynitro Cage Compound: 2,4,6,8,10,12,13,14,15-Nonanitro-2,4,6,8,10,1,2,13,1,4,15- nonaazaheptacyclo[5.5.1.13,11.1.5,9]pentadecane, J. Mol. Model., 2012, 18(6), 2369-2376.
- [32] Chernikova N.Y., Belskii V.K., Zorkii P.M., New Statistical Data on the Topology of Homomolecular Organic Crystals, J. Stuct. Chem., 1990, 31(4), 661-666.
- [33] Wilson A.J.C., Space Group Rare for Organic Structure. I. Trinic Monoclinic, and Orthorhombic Crystal Class, Acta Crystal. Sect. A: Foundcrystallogr., 1988, 44(5), 715-724.
- [34] Srinivasan R., On Space-group Frequencies, Acta Crystal. Sect. A: Foundcrystallogr., 1992, 48(6), 917-918.
- [35] Mighell A.D., Himes V.L., Rodgers J.R., Space-group Frequencies for Organic Compounds, Acta Crystal. Sect. A: Foundcrystallogr., 1983, 39(5), 737-740.
- [36] Baur W.H., Kassner D., The Perils of Cc: Comparing the Frequencies of Falsely Assigned Space Groups with Their General Population, Acta Crystal. Sect. B: Struct. Sci., 1992, 48(4), 356-369.
- [37] Politzer P., Martinez J., Murray J.S., Concha M.C., Toro-Labbe A., An Electronic Interaction Correction for Improved Crystal Density Prediction, Mol. Phys., 2009, 2095-2101.
- [38] Xiao H.M., Xu X.J., Qiu L., Theoretical Design of High Energy Materials, Science Press, Beijing, 2008.
- [39] Brill T.B., James K.J., Kinetics and Mechanisms of Thermal Decomposition of Nitroaromatic Explosives, Chem. Rev., 1993, 93(8), 2667-2692.
- [40] Song X.S., Cheng X.L., Yang X.D., Li D.H., Linghu R.F., Correlation between the Bond Dissociation Energies and Impact Sensitivities in Nitramine and Polynitro Benzoate Molecules with Polynitro Alkyl Groups, J. Hazrd. Mater., 2008, 150(2), 317-321.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edf65671-4cdd-4128-981f-39d5ee257f14