Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to high performance demands of grid-connected pulse-width modulation (PWM) converters in power applications, backstepping control (BSC) has drawn wide research interest for its advantages, including high robustness against parametric variations and external disturbances. In order to guarantee these advantages while providing high static and dynamic responses, in this work, a robust BSC (RBSC) with consideration of grid-connected PWM converter parameter uncertainties is proposed for three-phase grid-connected four-leg voltage source rectifiers (GC-FLVSR). The proposed RBSC for GC-FLVSR is composed of four independent controllers based on the Lyabonov theory that control DC bus voltage and input currents simultaneously. As a result, unit power factor, stable DC-bus voltage, sinusoidal four-leg rectifier input currents with lower harmonics and zero-sequence (ZS), and natural currents can be accurately achieved. Furthermore, the stability and robustness against load, DC capacitor, and filter inductance variations can be tested. The effectiveness and superiority of the proposed RBSC compared to the PI control (PIC) have been validated by processor-in-the-loop (PIL) co-simulation using the STM32F407 discovery-development-board as an experimental study.
Czasopismo
Rocznik
Tom
Strony
65--82
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr., wzory
Twórcy
autor
- Electrical Engineering Laboratory (EEL), Faculty of Technology, University of M’sila, M’sila 28000, Algeria
autor
- LPMRN Laboratory, Faculty of Sciences and Technology, University of Bordj Bou Arreridj, 34000, Algeria
Bibliografia
- [1] Lu, J., Golestan, S., Savaghebi, M., Vasquez, J. C., Guerrero, J. M., & Marzabal, A. (2017). An enhanced state observer for DC-link voltage control of three-phase AC/DC converters. IEEE Transactions on Power Electronics, 33(2), 936-942. https://doi.org/10.1109/TPEL.2017.2726110
- [2] Song, T., Wang, P., Zhang, Y., Gao, F., Tang, Y., & Pholboon, S. (2020). Suppression Method of Current Harmonic for Three-Phase PWM Rectifier in EV Charging System. IEEE Transactions on Vehicular Technology, 69(9), 9634-9642. https://doi.org/10.1109/TVT.2020.3005173
- [3] Rabie, D., Senjyu, T., Alkhalaf, S., Mohamed, Y. S., & Shehata, E. G. (2021). Study and analysis of voltage source converter control stability for HVDC system using different control techniques. Ain Shams Engineering Journal, 12(3), 2763-2779. https://doi.org/10.1016/j.asej.2020.12.013
- [4] Zhang, R., Lee, F. C., & Boroyevich, D. (2000, June). Four-legged three-phase PFC rectifier with fault tolerant capability. Proceedings of the IEEE 31st Annual Power Electronics Specialists Conference, Galway, Ireland, 1, 359-364. https://doi.org/10.1109/PESC.2000.878878
- [5] Kaszewski, A., Gałecki, A., Ufnalski, B., & Grzesiak, L. M. (2014). State-space current control for four-leg grid-connected PWM rectifiers with active power filtering function. Proceedings of the IEEE 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 1265-1271. https://doi.org/10.1109/EPEPEMC.2014.6980686
- [6] Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., & Mustafa, M. W. (2016). Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review. Renewable and Sustainable Energy Reviews, 54, 1592-1610. https://doi.org/10.1016/j.rser.2015.10.079
- [7] Mandrioli, R., Viatkin, A., Hammami, M., Ricco, M., & Grandi, G. (2020). A comprehensive AC current ripple analysis and performance enhancement via discontinuous PWM in three-phase four-leg grid-connected inverters. Energies, 13(17), 4352. https://doi.org/10.3390/en13174352
- [8] Olives-Camps, J. C., Mauricio, J. M., Barragán-Villarejo, M., & Matas-Díaz, F. J. (2019). Voltage control of four-leg VSC for power system applications with nonlinear and unbalanced loads. IEEE Transactions on Energy Conversion, 35(2), 640-650. https://doi.org/10.1109/TEC.2019.2957185
- [9] Chebabhi, A., Fellah, M. K., Kessal, A., & Benkhoris, M. F. (2015). Comparative study of reference currents and DC bus voltage control for Three-Phase Four-Wire Four-Leg SAPF to compensate harmonics and reactive power with 3D SVM. ISA Transactions, 57, 360-372. https://doi.org/10.1016/j.isatra.2015.01.011
- [10] Kumar, A. P., Kumar, G. S., & Sreenivasarao, D. (2020). Model predictive control with constant switching frequency for four-leg DSTATCOM using three-dimensional space vector modulation. IET Generation, Transmission & Distribution, 14(17), 3571-3581. https://doi.org/10.1049/iet-gtd.2019.1775
- [11] Yin, H., & Dieckerhoff, S. (2015). Experimental comparison of DPC and VOC control of a three-level NPC grid connected converter. Proceedings of the IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems, Aachen, Germany, 1-7. https://doi.org/10.1109/PEDG.2015.7223072
- [12] Dheepanchakkravarthy, A., Akhil, S., Venkatraman, K., Selvan, M. P., & Moorthi, S. (2018). Performance analysis of FPGA controlled four-leg DSTATCOM for multifarious load compensation in electric distribution system. Engineering Science and Technology, an International Journal, 21(4), 692-703. https://doi.org/10.1016/j.jestch.2018.05.004
- [13] Djerioui, A., Houari, A., Saim, A., Aït-Ahmed, M., Pierfederici, S., Benkhoris, M. F., & Ghanes, M. (2019). Flatness-based grey wolf control for load voltage unbalance mitigation in four-leg voltage source inverters. IEEE Transactions on Industry Applications, 56(2), 1869-1881. https://doi.org/10.1109/TIA.2019.2957966
- [14] Pichan, M., & Rastegar, H. (2017). Sliding-mode control of four-leg inverter with fixed switching frequency for uninterruptible power supply applications. IEEE Transactions on Industrial Electronics, 64(8), 6805-6814. https://doi.org/10.1109/TIE.2017.2686346
- [15] Pichan, M., Arab Markadeh, G., & Blaabjerg, F. (2020). Continuous finite-time control of four-leg inverter through fast terminal sliding mode control. International Transactions on Electrical Energy Systems, 30(6), e12355. https://doi.org/10.1002/2050-7038.12355
- [16] Chebabhi, A., Fellah, M. K., Kessal, A., & Benkhoris, M. F. (2016). A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers. ISA Transactions, 63, 328-342.
- [17] Wang, X., Sun, D., & Zhu, Z. Q. (2017). Resonant-based backstepping direct power control strategy for DFIG under both balanced and unbalanced grid conditions. IEEE Transactions on Industry Applications, 53(5), 4821-4830. https://doi.org/10.1109/TIA.2017.2700280
- [18] Li, J., Liu, Z., & Su, Q. (2019). Improved adaptive backstepping sliding mode for a three-phase PWM converter. IET Control Theory & Applications, 13(6), 854-860. https://doi.org/10.1049/iet-cta.2018.5453
- [19] Wai, R. J., & Yang, Y. (2019). Design of backstepping direct power control for three-phase PWM rectifier. IEEE Transactions on Industry Applications, 55(3), 3160-3173. https://doi.org/10.1109/TIA.2019.2893832
- [20] Alyoussef, F., & Kaya, I. (2019). A review on nonlinear control approaches: sliding mode control backstepping control and feedback linearization control. International Engineering and Natural Sciences Conference, (Vol. 2019, pp. 608-619).
- [21] Zamzoum, O., Derouich, A., Motahhir, S., El Mourabit, Y., & El Ghzizal, A. (2020). Performance analysis of a robust adaptive fuzzy logic controller for wind turbine power limitation. Journal of Cleaner Production, 265, 121659. https://doi.org/10.1016/j.jclepro.2020.121659
- [22] Cheddadi, Y., Errahimi, F., & Es-sbai, N. (2018). Design and verification of photovoltaic MPPT as an automotive-based embedded software. Solar Energy, 171, 414-425. https://doi.org/10.1016/j.solener.2018.06.085
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edf33d77-83ef-45ff-8d00-8d1ed5c1f138