Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Continuous development of intelligent network applications drives the demand for deployment-ready hardware and software solutions. Such solutions are highly valued not only by distributed producers of energy but by energy consumers as well. The use of intelligent network applications enables the development and improvement of the quality of services. It also increases self-sufficiency and efficiency. This paper describes an example of such device that allows for the control of a dual active bridge (DAB) converter and enables its remote control in real time over an IP-based network. The details of both hardware and software components of proposed implementation are provided. The DAB converter gives a possibility to control and manage the energy between two DC power systems with very different voltage levels. Not only information, but also the quality of energy, the direction of power flow, and energy storage systems can be easily controlled through an IP-based network and power electronics converters. Information technology, together with intelligent control of power electronics technology, provides a flexible solution, especially for sustainable smart grids.
Rocznik
Tom
Strony
887--896
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Department of Power Electronics and Electric Drives, Bialystok University of Technology, 45 D Wiejska St., 15-351 Białystok, Poland
autor
- Department of Power Electronics and Electric Drives, Bialystok University of Technology, 45 D Wiejska St., 15-351 Białystok, Poland
autor
- Department of Electrical Drives and Power Electronics, Tallinn University of Technology, 5 Ehitajate St., 19086 Tallinn, Estonia
autor
- Institute of Control and Industrial Electronics, Warsaw University of Technology, 1 Politechniki Sq., 00-661 Warsaw, Poland
autor
- Department of Electrical and Computer Engineering, Bradley University, Peoria, IL 61625, United States of America
Bibliografia
- [1] E.M. Natsheh, A.R. Natsheh, and A. Albarbar, “Intelligent controller for managing power flow within standalone hybrid power systems”, IET Science, Measurement & Technology 7 (4), 191‒200 (2013).
- [2] A. Malinowski, Y. Hao, “Comparison of embedded system design for industrial applications”, IEEE Trans. on Industrial Informatics 7 (2), 244‒254 (2011).
- [3] B.M. Wilamowski and J.D. Irvin (Eds.), “Control and mechatronics”, Sec. Ed. Taylor & Francis, 683, 2011.
- [4] L. Jian, H. Xue, G. Xu, X. Zhu, D. Zhao, and Z.Y. Shao, “Regulated hharging of plug-in hybrid electric vehicles for minimizing load variance in household smart microgrid”, IEEE Trans. on Industrial Electronics 60 (8), 3218‒3226 (2013).
- [5] R.J. Kaplar, M.J. Marinella, S. DasGupta, M.A. Smith, S. Atcitty, M. Sun, and T. Palacios, “Characterization and reliability of SiC- and GaN-based power transistors for renewable energy applications”, 2012 IEEE Energytech Conf., 29‒31 (2012).
- [6] H. Zhang, L.M. Tolbert, and B. Ozpineci, “Impact of SiC devices on hybrid electric and plug-in hybrid electric vehicles”, IEEE Trans. on Industry Applications 47 (2), 912‒921 (2011).
- [7] M.P. Kazmierkowski, M. Jasinski and G. Wrona, “DSP-based control of grid-connected power converters operating under grid distortions”, IEEE Trans. on Industrial Informatics 17 (2), 204‒211 (2011).
- [8] S.P. Engel, N. Soltau, H. Stagge, and R.W. De Doncker, “Dynamic and balanced control of three-phase high-power dual-active bridge DC–DC converters in DC-grid applications”, IEEE Trans. on Power Electronics 28 (4), 1880‒1889 (2013).
- [9] A.J. Moradewicz and M.P. Kazmierkowski, “High efficiency contactless energy transfer system with power electronic resonant converter”, Bull. Pol. Ac.: Tech. 57 (4), 375‒381 (2009).
- [10] A.J. Moradewicz and M.P. Kazmierkowski, “Contactless Energy Transfer System With FPGA-Controlled Resonant Converter”, IEEE Trans. on Industrial Electronics 57 (9), doi:10.1109/TIE.2010.2051395, 3181‒3190 (2010).
- [11] Web site, http://new.abb.com/smartgrids/what-is-a-smart-grid (2014).
- [12] A. Espinoza, Y. Penya, J.C. Nieves, M. Ortega, A. Pena and D. Rodriguez, “Supporting Business Workflows in Smart Grids: An Intelligent Nodes-Based Approach”, IEEE Trans. on Industrial Informatics 9 (3), 1384‒1397 (2013).
- [13] C. Cecati, G. Hancke, P. Palensky, P. Siano, and X. Yu, “Guest editorial special section on information technologies in smart grids”, IEEE Trans. on Industrial Informatics 9 (3), 1380‒1383 (2013).
- [14] J. Berst, “Can the U.S. deploy an energy net the way it did the Internet?”, SmartGridNews.com (28 Aug. 2012).
- [15] R. Almeida, “Smart grid leverages ARM®-based solutions to enable intelligent power consumption with a more robust end-to-end communication network”, Texas Instruments, White papers, 1‒8 (2012).
- [16] R.U. Lenke, “A Contribution to the design of isolated DC-DC converters for utility applications”, Ph.D dissertation, E.ON Energy Research Center, PGS Power Generation and Storage Systems, RWTH Aachen, 230, 2012.
- [17] D. Aggeler, “Bidirectional galvanically isolated 25 kW 50kHz 5kV/700V Si-SiC super cascode/Si-IGBT DC-DC converter”, Ph.D. dissertation, ETH Zurich, 163, 2010.
- [18] O. Husev, L. Liivik, F. Blaabjerg, A. Chub, D. Vinnikov, and I. Roasto, “Galvanically isolated quasi-Z-source DC–DC converter with a novel ZVS and ZCS technique”, IEEE Trans. on Industrial Electronics 62 (12), 7547‒7556 (2015).
- [19] Web site, http://www.st.com/.
- [20] Web site, http://www.arm.com/products/processors/cortex-m/.
- [21] D. Vinnikov, I. Roasto, and J. Zakis, “New bi-directional DC/DC converter for supercapacitor interfacing in high-power applications”, 14th International Power Electronics and Motion Control Conf. (EPE/PEMC) T11, 38‒43, 6‒8 (2010).
- [22] V. Beldjajev, I. Roasto, and J. Zakis, “Impact of component losses of the efficiency of the new Quasi-Z source based dual active bridge”, Technological Innovation for the Internet of Things: Doctoral Conference on Computing, Electrical and Industrial Systems. Portugal: Springer Heidelberg, 485‒492 (2013).
- [23] D. Vinnikov, I. Roasto; J. Zakis and R. Strzelecki: “New step-up DC/DC converter for fuel cell powered distributed generation systems: some design guidelines”, in journal Electrical Review 86 (8), ISSN 0033‒2097, 245‒252 (2010).
- [24] I. Roasto, D. Vinnikov, J. Zakis and O. Husev, “New shoot-through control methods for qZSI-Based DC/DC converters”, IEEE Trans. on Industrial Informatics 9 (2), 640‒647 (2013).
- [25] M.R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L.A. Grieco, G. Boggia, and M. Dohler, “Standardized protocol stack for the Internet of (important) Things”, IEEE Communications Surveys & Tutorials 15 (3), 1389‒1406 (2013).
- [26] J.D. Decotignie, “The many faces of industrial ethernet [past and present]”, IEEE Industrial Electronics Magazine 3 (1), 8‒19 (2009).
- [27] R.A.S. Fernandes, I.N. da Silva, and M. Oleskovicz, “Load profile identification interface for consumer online monitoring purposes in smart grids”, IEEE Trans. on Industrial Informatics 9 (3), 1507‒1517 (2013).
- [28] N.M. Torrisi, “Monitoring services for industrial automation”, IEEE Industrial Electronics Magazine 5 (1), 49‒60 (2011).
- [29] E. Marinoni, “RTOS, TCP/IP, File System, USB, CAN, etc.”, http://www.emcu.it/STM32/RTOS-TCPIP-FileSystem-USB-etc/RTOS-TCPIP-FileSystem-USB-etc.html (21 March 2015).
- [30] Application Note 3966 – LwIP TCP/IP stack demonstration for STM32F407/STM32F417 microcontrollers, STMicroelectronics, 2011.
- [31] Application Note 3969 – Secure socket layer (SSL) for STM32F417xx microcontroller, STMicroelectronics, 2011.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edecf0c8-b89c-4ff0-9780-72fa9ed48ba2