PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal UV quantity for a ballast water treatment system for compliance with IMO standards

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ballast water management is an effective measure to ensure that organisms, bacteria and viruses do not migrate with the ballast water to other areas. In 2004, the International Maritime Organization adopted the International Convention on the Control and Management of Ballast Water and Ship Sediments, which regulates issues related to ballast water management. Many technologies have been researched and developed, and of these, the use of UV rays in combination with filter membranes has been shown to have many advantages and to meet the requirements of the Convention. However, the use of UV furnaces in ballast water treatment systems requires a very large capacity, involving the use of many high-power UV lamps. This not only consumes large amounts of electrical energy, but is also expensive. It is therefore necessary to find an optimal algorithm to enable the UV radiation for the UV controller in the ballast water sterilisation process to be controlled in a reasonable and effective manner. This controller helps to prolong the life of the UV lamp, reduce power consumption and ensure effective sterilisation. This paper presents a UV control algorithm and a controller for a UV furnace for a ballast water treatment system installed on a ship. The results of tests on vessels illustrate the effect of the proposed UV controller.
Rocznik
Tom
Strony
31--42
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Faculty of Navigation, Vietnam Maritime University, Haiphong, Viet Nam
  • Faculty of Navigation, Vietnam Maritime University, Haiphong, Viet Nam
Bibliografia
  • 1. G. Altug, S. Gurun, M. Cardak, P. S. Ciftci, and S. Kalkan, “The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey,” Mar. Environ. Res., vol. 81, pp. 35–42, Oct. 2012, doi: 10.1016/j.marenvres.2012.08.005.
  • 2. L. J. Aridgides, M. A. Doblin, T. Berke, F. C. Dobbs, D. O. Matson, and L. A. Drake, “Multiplex PCR allows simultaneous detection of pathogens in ships’ ballast water,” Mar. Pollut Bull., vol. 48, no. 11, pp. 1096–1101, Jun. 2004, doi: 10.1016/j.marpolbul.2003.12.017.
  • 3. J. Chen, Y. Lin, J. Zhou Huo, M. Xia Zhang, and Z. Shang Ji, “Optimization of ship’s subdivision arrangement for offshore sequential ballast water exchange using a non-dominated sorting genetic algorithm,” Ocean Engineering, vol. 37, no. 11, pp. 978–988, Aug. 2010, doi: 10.1016/j.oceaneng.2010.03.012.
  • 4. I. Staffell and P. Balcombe, “How to decarbonise international shipping: options for fuels, technologies and policies,” Energy Convers. Manag., [Online]. Available: https://www.academia. edu/38669854/How_to_decarbonise_international_ shipping_options_for_fuels_technologies_and_policies.
  • 5. P. Van Hung, K.-S. Kim, L. Q. Tien, and N. M. Cuong, “Distribution of oil spill response capability through considering probable incident, environmental sensitivity and geographical weather in Vietnamese waters,” Journal of International Maritime Safety, Environmental Affairs, and Shipping, vol. 2, no. 1, pp. 31–41, Nov. 2018, doi: 10.1080/25725084.2018.1511240.
  • 6. G. Drillet et al., “Improvement in compliance of ships’ ballast water discharges during commissioning tests,” Mar. Pollut. Bull., vol. 191, p. 114911, Jun. 2023, doi: 10.1016/j. marpolbul.2023.114911.
  • 7. P. E. Neill and M. Arim, “Human Health Link to Invasive Species,” in Encyclopedia of Environmental Health, pp. 570–578, 2019, doi: 10.1016/B978-0-12-409548-9.11731-2.
  • 8. S. Gollasch, C. L. Hewitt, S. Bailey, and M. David, “Introductions and transfers of species by ballast water in the Adriatic Sea,” Mar. Pollut. Bull., vol. 147, pp. 8–15, Oct. 2019, doi: 10.1016/j. marpolbul.2018.08.054.
  • 9. O. Vidjak et al., “Zooplankton in Adriatic port environments: Indigenous communities and non-indigenous species,” Mar. Pollut. Bull., vol. 147, pp. 133–149, Oct. 2019, doi: 10.1016/j. marpolbul.2018.06.055.
  • 10. P. Van Hung, K.-S. Kim, and M. Lee, “Cooperative response to marine hazardous and noxious substances and oil spill incidents in the ASEAN region,” Australian Journal of Maritime & Ocean Affairs, vol. 11, no. 1, pp. 61–72, Jan. 2019, doi: 10.1080/18366503.2018.1559524.
  • 11. IMO, International Maritime Organization [IMO], 2004. International Convention for the Control and Management of Ships’ Ballast Water and Sediments. International Maritime Organization, London. [Online]. Available: http:// www.imo.org/en/About/Conventions/List ofConventions/ Pages/International- Convention-for-the-Control-andManagement-of-Ships%27-Ballast-Water-and-Sediments(BWM).aspx.
  • 12. G. Elidolu, S. I. Sezer, E. Akyuz, O. Arslan, and Y. Arslanoglu, “Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended evidential reasoning (ER) and rule-based Bayesian network (RBN) approach,” Reliab. Eng. Syst. Saf., vol. 231, p. 108975, Mar. 2023, doi: 10.1016/j.ress.2022.108975.
  • 13. D. K. Gray, I. C. Duggan, and H. J. Macisaac, “Can sodium hypochlorite reduce the risk of species introductions from diapausing invertebrate eggs in non-ballasted ships?,” Mar. Pollut. Bull., vol. 52, no. 6, pp. 689–695, Jun. 2006, doi: 10.1016/j.marpolbul.2005.11.001.
  • 14. P. P. Sangave, A. Mukherjee, and A. Pandit, “Ballast water treatment using hydrodynamic cavitation,” Nov. 2014. [Online]. Available: https://www.semanticscholar.org/paper/ Ballast-Water-Treatment-Using-Hydrodynamic-SangaveMukherjee/ ca3f5edcc2a28ba175b1a4c0093b70b49bb2a334.
  • 15. S. Rahman, “Implementation of ballast water management plan in ships through ballast water exchange system,” Procedia Eng., vol. 194, pp. 323–329, Jan. 2017, doi: 10.1016/j. proeng.2017.08.152.
  • 16. E. Tsolaki and E. Diamadopoulos, “Technologies for ballast water treatment: A review,” Journal of Chemical Technology & Biotechnology, vol. 85, no. 1, pp. 19–32, Jan. 2010, doi: 10.1002/jctb.2276.
  • 17. S. A. Bailey and H. Rajakaruna, “Optimizing methods to estimate zooplankton concentration based on generalized patterns of patchiness inside ballast tanks and ballast water discharges,” Ecol. Evol., vol. 7, no. 22, pp. 9689–9698, Nov. 2017, doi: 10.1002/ece3.3498.
  • 18. C. Grob and B. G. Pollet, “Regrowth in ship’s ballast water tanks: Think again!” Mar. Pollut. Bull., vol. 109, no. 1, pp. 46–48, Aug. 2016, doi: 10.1016/j.marpolbul.2016.04.061.
  • 19. V. Raţᾰ and L. Rusu, “Ballast water pollution risk assessment in the Black Sea,” in Mechanical Testing and Diagnosis, Jan. 2021, pp. 35–40. doi: 10.35219/mtd.2020.4.05.
  • 20. E. Briski et al., “Combining ballast water exchange and treatment to maximize prevention of species introductions to freshwater ecosystems,” Environ. Sci. Technol., vol. 49, no. 16, pp. 9566–9573, Aug. 2015, doi: 10.1021/acs.est.5b01795.
  • 21. A. Travizi et al., “Macrozoobenthos in the Adriatic Sea ports: Soft-bottom communities with an overview of nonindigenous species,” Mar. Pollut. Bull., vol. 147, pp. 159–170, Oct. 2019, doi: 10.1016/j.marpolbul.2019.01.016.
  • 22. P. Mozetič et al., “Phytoplankton diversity in Adriatic ports: Lessons from the port baseline survey for the management of harmful algal species,” Mar. Pollut. Bull., vol. 147, pp. 117–132, Oct. 2019, doi: 10.1016/j.marpolbul.2017.12.029.
  • 23. J.-H. Park, Y.-B. Sim, S.-Y. Kang, and S.-H. Kim, “Inactivation of indicating microorganisms in ballast water using chlorine dioxide,” Ecology and Resilient Infrastructure, vol. 5, no. 3, pp. 111–117, Sep. 2018, doi: 10.17820/ERI.2018.5.3.111.
  • 24. T. McCollin, G. Quilez-Badia, K. D. Josefsen, M. E. Gill, E. Mesbahi, and C. L. J. Frid, “Ship board testing of a deoxygenation ballast water treatment,” Mar. Pollut. Bull., vol. 54, no. 8, pp. 1170–1178, Aug. 2007, doi: 10.1016/j. marpolbul.2007.04.013.
  • 25. L. A. Drake, M. A. Doblin, and F. C. Dobbs, “Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm,” Mar. Pollut. Bull., vol. 55, no. 7, pp. 333–341, Jan. 2007, doi: 10.1016/j.marpolbul.2006.11.007.
  • 26. S. Vodyanitskaya et al., “Methods of decontamination of ship ballast water with polyguanidine disinfectant,” International Journal of Infectious Diseases, vol. 79, p. 77, Feb. 2019, doi: 10.1016/j.ijid.2018.11.195.
  • 27. E. Lakshmi, M. Priya, and V. S. Achari, “An overview on the treatment of ballast water in ships,” Ocean Coast Manag., vol. 199, p. 105296, Jan. 2021, doi: 10.1016/j.ocecoaman.2020.105296.
  • 28. M. N. Tamburri, K. Wasson, and M. Matsuda, “Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion,” Biol. Conserv., vol. 103, no. 3, pp. 331–341, Mar. 2002, doi: 10.1016/S0006-3207(01)00144-6.
  • 29. J.-T. Baek, J.-H. Hong, M. Tayyab, D.-W. Kim, P. R. Jeon, and C.-H. Lee, “Continuous bubble reactor using carbon dioxide and its mixtures for ballast water treatment,” Water Res., vol. 154, pp. 316–326, 2019, doi: https://doi.org/10.1016/j. watres.2019.02.014.
  • 30. IMO, “Globallast guidelines for development of a national ballast water management Strategy, 1997. Guidelines for preventing the introduction of unwanted organisms and pathogens from ships ballast waters and sediment discharges. Resolution A.868 (20).” 2004.
  • 31. G. H. Briton, B. Yao, and G. Ado, “Evaluation of the Abidjan lagoon pollution,” Journal of Applied Sciences and Environmental Management, vol. 11, no. 2, 2007, doi: 10.4314/jasem. v11i2.55030.
  • 32. J. Liu, P. Wang, G. Liu, J. Dai, J. Xiao, and H. Liu, “Study of the characteristics of ballast bed resistance for different temperature and humidity conditions,” Constr. Build. Mater., vol. 266, p. 121115, Jan. 2021, doi: 10.1016/j.conbuildmat.2020.121115.
  • 33. N. A. Salleh et al., “Pathogenic hitchhiker diversity on international ships’ ballast water at West Malaysia port,” Mar. Pollut. Bull., vol. 172, p. 112850, Nov. 2021, doi: 10.1016/j. marpolbul.2021.112850.
  • 34. G. Romanelli et al., “Ballast water management system: Assessment of chemical quality status of several ports in Adriatic Sea,” Mar. Pollut. Bull., vol. 147, pp. 86–97, Oct. 2019, doi: 10.1016/j.marpolbul.2017.12.030.
  • 35. M. R. First and L. A. Drake, “Life after treatment: detecting living microorganisms following exposure to UV light and chlorine dioxide,” J. Appl. Phycol., vol. 26, no. 1, pp. 227–235, Feb. 2014, doi: 10.1007/s10811-013-0049-9.
  • 36. Z. Manxia, L. Shengjie, T. Xiaojia, L. Xiang, and Z. Yimin, “Evaluation of micro-pore ceramic filtration and uv radiation combination on ballast water treatment,” in 2010 International Conference on Digital Manufacturing & Automation, pp. 670–673, Dec. 2010, doi: 10.1109/ICDMA.2010.374.
  • 37. P. P. Stehouwer, A. Buma, and L. Peperzak, “A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide,” Environ. Technol., vol. 36, no. 16, pp. 2094–2104, Aug. 2015, doi: 10.1080/09593330.2015.1021858.
  • 38. I. Rivas-Zaballos, L. Romero-Martínez, I. Moreno-Garrido, J. Moreno-Andrés, A. Acevedo-Merino, and E. Nebot, “UV-LEDs combined with persulfate salts as a method to inactivate microalgae in ballast water,” Journal of Water Process Engineering, vol. 51, p. 103361, Feb. 2023, doi: 10.1016/j. jwpe.2022.103361.
  • 39. J. Xiao, Y. Xu, L. Hu, and H. Wu, “Evaluating the treatment performance of filtration & real-time UV irradiation processes for bacteria and pathogens in fresh ballast water,” Reg. Stud. Mar. Sci., vol. 63, p. 102971, 2023, doi: https://doi. org/10.1016/j.rsma.2023.102971.
  • 40. N. F. Gray, “Chapter Thirty-Four - Ultraviolet disinfection,” in Microbiology of Waterborne Diseases (Second Edition), S. L. Percival, M. V Yates, D. W. Williams, R. M. Chalmers, and N. F. Gray, Eds., Second Edition. London: Academic Press, 2014, pp. 617–630. doi: https://doi.org/10.1016/ B978-0-12-415846-7.00034-2.
  • 41. Y. Wang, L. Zou, L. Ma, Z. Zhao, and J. Guo, “A survey on control for Takagi-Sugeno fuzzy systems subject to engineering-oriented complexities,” Systems Science & Control Engineering, vol. 9, no. 1, pp. 334–349, 2021, doi: 10.1080/21642583.2021.1907259.
  • 42. “DESMI to manufacture ballast water treatment system under licence,” Pump Industry Analyst, vol. 2012, no. 8, pp. 12–13, 2012, doi: https://doi.org/10.1016/S1359-6128(12)70370-1.
  • 43. B. Sayinli, Y. Dong, Y. Park, A. Bhatnagar, and M. Sillanpää, “Recent progress and challenges facing ballast water treatment – A review,” Chemosphere, vol. 291, p. 132776, 2022, doi: https://doi.org/10.1016/j.chemosphere.2021.132776.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edea5c0b-e1f3-46a3-b7cf-95bd53485ce7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.