Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The applicability of integratedUnmannedAerialVehicle (UAV)-photogrammetry and automatic feature extraction for cadastral or property mapping was investigated in this research paper. Multi-resolution segmentation (MRS) algorithm was implemented on UAVgenerated orthomosaic for mapping and the findings were compared with the result obtained from conventional ground survey technique using Hi-Target Differential Global Positioning System (DGPS) receivers. The overlapping image pairs acquired with the aid of a DJI Mavic air quadcopter were processed into an orthomosaic using Agisoft metashape software while MRS algorithm was implemented for the automatic extraction of visible land boundaries and building footprints at different Scale Parameter (SPs) in eCognition developer software. The obtained result shows that the performance of MRS improves with an increase in SP, with optimal results obtained when the SP was set at 1000 (with completeness, correctness, and overall accuracy of 92%, 95%, and 88%, respectively) for the extraction of the building footprints. Apart from the conducted cost and time analysis which shows that the integrated approach is 2.5 times faster and 9 times cheaper than the conventional DGPS approach, the automatically extracted boundaries and area of land parcels were also compared with the survey plans produced using the ground survey approach (DGPS) and the result shows that about 99% of the automatically extracted spatial information of the properties fall within the range of acceptable accuracy. The obtained results proved that the integration of UAVphotogrammetry and automatic feature extraction is applicable in cadastral mapping and that it offers significant advantages in terms of project time and cost.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e19, 2022
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Federal University of Technology, Minna, Nigeria
autor
- Federal University of Technology, Minna, Nigeria
Bibliografia
- [1] Ajayi, O.G., Palmer, M., and Salubi, A.A. (2018). Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry. Remote Sens. Appl: Soc. Environ., 11, 220–230. DOI: 10.1016/j.rsase.2018.07.007.
- [2] Ali, Z., and Ahmed, S. (2013). Extracting parcel boundaries from satellite imagery for a Land Information System. In 6th International Conference on Recent Advances in Space Technologies (RAST), 12-14 June. pp. 79–81. Istanbul, Turkey.
- [3] Aplin P., Atkinson P., Curran P., (1999). Per-field classification of land use using the forthcoming very fine resolution satellite sensors: problems and potential solutions. In: Advances in Remote Sensing and GIS Analysis. Chichester: Wiley and Sons Inc., 219–239.
- [4] Aslam, A., Khan, E., and SufyanBeg, M.M. (2015). Improved edge detection algorithm for brain tumor segmentation. Procedia-Procedia Computer Science, 58, 430–437. DOI: 10.1016/J.PROCS. 2015.08.057.
- [5] Baatz, M., and Schape, A. (2000). Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. Retrieved February, 2022, from http://www.ecognition.com/sites/ default/files/405baatzfp12.pdf.
- [6] Babawuro, U., and Beiji, Z. (2012). Satellite imagery cadastral features extractions using image processing algorithms: A variable option for cadastral sciences. Int. J. Comput. Sci., 9(4), 30–34.
- [7] Bandyopadyay, S.K. (2012). Edge detection from CT images of lung. Int. J. Eng. Sci. Adv. Tech., 2(1), 34–37.
- [8] Barnes, T., and Engel, A. (2014). The photogrammetric potential of low-cost UAVs in forestry and agriculture. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVI pp. 16–19. Retrieved February, 2022, from http://www.isprs.org/proceedings/ XXXVII/congress/1pdf/206.pdf.
- [9] Bowyer, K.K., Kranenburg, C., and Dougherty, S. (2001). Edge detector evaluation using empirical ROC curves. Comput. Vis. Image Underst., 84(1), 77–103. DOI: 10.1109/CVPR.1999.786963.
- [10] Chai, H., Wee, L.K., and Supriyanto, E. (2012). Edge detection in ultrasound images using speckle reducing anisotropic diffusion in canny edge detector framework. WSEAS Trans. on Biology and Biomedicine, 8(2), 51–60. Retrieved February, 2022 from http://www.mendeley.com/research/edgedetection ultrasound-images-using-speckle-reducing-anisotropicdiffusion-canny-edge-detector-fr/.
- [11] Chen, Y., Qiang, C. and Changfeng, J. (2019). Multi-resolution segmentation parameters optimization and evaluation for VHR remote sensing image based on meanNSQI and discrepancy measure. J. Spat. Sci., 66(2), 253–278. DOI: 10.1080/14498596.2019.1615011.
- [12] CMU (1997). Performance evaluation for feature extraction. Slides presented at the Terrain Week 1997. Retrieved from February 2022, http://www.cs.cmu.edu/afs/cs/usr/maps/www/rcvw/terrainweek97/ roads/tw97-roadeval.ROOT.html.
- [13] Crommelinck, S., Bennett, R., Gerke, M. et al. (2016). Review of automatic feature extraction from high-resolution optical sensor data for UAV-Based cadastral mapping. Remote Sens., 8, 689. DOI: 10.3390/rs8080689.
- [14] Crommelinck, S., Bennett, R., Gerke, M. et al. (2017). Contour detection for UAV-based cadastral mapping. Remote Sens., 9, 171. DOI: 10.3390/rs9020171.
- [15] Crommelinck, S., Höfle, B., Koeva, M.N. et al. (2020). Interactive cadastral boundary delineation from UAV data. ISPRS Ann. Photogr. Remote Sens. Spat. Inf. Sci., IV-2, 81–88. DOI: 10.5194/isprsannals-IV-2-81-2018.
- [16] Draguţ, L., Tiedec, D., and Levick, S.R. (2010). ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci., 24(6), 859–871. DOI: 10.1080/13658810903174803.
- [17] Draguţ, L., Csillik, O., Eisank, C. et al. (2014). Automated parameterization for multi -scale image segmentation on multiple layers. J. Photogr. Remote Sens., 88, 119–127. DOI: 10.1016/j.isprsjprs. 2013.11.018.
- [18] Eisenbeiss, H. (2009). UAV Photogrammetry. Retrieved from February 2022, http://www.igpdata.ethz.ch/ berichte/blaue_berichte_pdf/105.pdf.
- [19] Fetai, B., Oštir, K., Fras, M., Lisec, A. (2019). Extraction of visible boundaries for cadastral mapping based on UAV imagery. Remote Sens., 11(13), 1510. DOI: 10.3390/rs11131510.
- [20] Fetai, B., Račič, M., Tekavec, J. et al. (2020). Detection of visible boundaries from UAV images using U-Net. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2020, 437–442.
- [21] François, C. et al. (2015). Keras. Retrieved from March 9, 2021, https://github.com/fchollet/keras.
- [22] Galarreta, J., Kerle, N., and Gerke, M. (2015). UAV-based urban structural damage assessment using objectbased image analysis and semantic reasoning. Nat. Hazards and Earth Syst. Sci., 15, 1087–1101. DOI: 10.5194/nhess-15-1087-2015.
- [23] Giuliani, D. (2012). Edge detection from MRI, DTI images with an anisotropic vector field flow using a divergence map. Algorithms, 5(4), 636–653. DOI: 10.3390/a5040636.
- [24] Gupta, R. (2016). Enhanced edge detection technique for satellite images. International Conference on Cloud Computing and Security. China: Springer, pp. 273–283.
- [25] Heipke, C., Mayer, H., Wiedemann, C.O. et al. (1997). Evaluation of automatic road extraction. Int. Arch. Photogramm. Remote Sens., 47–56.
- [26] Horkaew, P., Puttinaovarat, S., and Khaimook, K. (2015). River boundary delineation from remote sensed imagery based on SVM and relaxation labelling of water index and DSM. J. Theor. Appl. Inf. Technol., 71(3), 376–386.
- [27] Jazayeri, I., Rajabifard, A., and Kalantari, M. (2014). A geometric and semantic evaluation of 3D data sourcing methods for land and property information. Land Use Policy, 36, 219–230. DOI: 10.1016/j.landusepol.2013.08.004.
- [28] Jena, K.K., Mishra, S., and Mishra, S. (2015). Edge detection of satellite images: A comparative study. Int. J. Innov. Sci., Eng. Tech., 2(3), 75–79.
- [29] Karabin, M., Bakula, K., and Luczynski, R. (2021). Verification of the geometrical representation of buildings in cadastre using UAV photogrammetry. Geomat. Environ. Eng., 15(4), 81–99. DOI: 10.7494/geom.2021.15.4.81.
- [30] Kohli, D., Crommelinck, S., and Bennett, R. (2017). Object-based image analysis for cadastral mapping using satellite images. In Proceedings of the International Society for Optics and Photonics, Image Signal Processing Remote Sensing XXIII; SPIE. The International Society for Optical Engineering: Warsaw, Poland.
- [31] Kohli, D., Unger, E.-M., Lemmen, C. et al. (2018). Validation of a cadastral map created using satellite imagery and automated feature extraction techniques: A case of Nepal. In Proceedings of the FIG Congress, 6-11 May, pp. 17, Istanbul, Turkey.
- [32] Lakhani, K., Minocha, B., and Gugnani, N. (2016). Analyzing edge detection techniques for feature extraction in dental radiographs. Perspectives in Science, 8(4), 395–398. DOI: 10.1016/j.pisc.2016.04.087.
- [33] Luo, X., Bennett, R.M., Koeva, M. et al. (2017). Investigating semi-automated cadastral boundary extraction from airborne laser scanned data. Land, 6(3), 60. DOI: 10.3390/land6030060.
- [34] Manyoky, M., Theiler, P., Steudler, D. et al. (2011). Unmanned aerial vehicle in cadastral applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII-1/(September), pp. 57–62. DOI: 10.5194/isprsarchives-XXXVIII-1-C2257-2011.
- [35] Martha, T.R., Kerle, N., van Westen et al. (2011). Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Trans. Geosci. Remote Sens., 49(12), 4928–4943. DOI: 10.1109/TGRS.2011.2151866.
- [36] McGlone, J.C., and Shufelt, J.A. (1994). Projective and object space geometry for monocular building extraction. IEEE Conf. Comput. Vis. Pattern Recogn., 54–61.
- [37] Munyati, C. (2018). Optimizing multiresolution segmentation: delineating savannah vegetation boundaries in the Kruger National Park, South Africa, using Sentinel 2 MSI imagery. International J. Remote Sens., 39, 997–6019. DOI: 10.1080/01431161.2018.1508922.
- [38] Neubert, M., Herold, H., and Meinel, G., (2007). Assessing image segmentation quality – concepts, methods and application. Lecture Notes in Geoinformation & Cartography, 769–784. DOI: 10.1007/978-3- 540-77058-9_42.
- [39] Nyandwi, E. (2018). The battle of cadastral intelligence: measuring the results of competition between people and machine in creation of cadastral boundaries. MSc thesis submitted to Enschede: University of Twente, Faculty of GeoInformation and Earth Observation (ITC). Retrieved from .
- [40] Pal, N.R., and Pal, S.K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9), 1277–1294. DOI: 10.1016/0031-3203(93)90135-J.
- [41] Parida, P.K., Sanabada, M.K., and Tripathi, S. (2014). Cadastral resurvey using high resolution satellite ortho image-challenges: A case study in Odisha, India. Int. Arch. Photogram., Remote Sens. Spat. Inf. Sci., 40(8), 1165–1170. DOI: 10.5194/isprsarchives-XL-8-1165-2014.
- [42] Punarselvam, E., and Suresh, P. (2011). Edge detection of CT scan spine disc image using canny edge detection algorithm based on magnitude and edge length. In 3rd International Conference on Trendz in Information Sciences & Computing (TISC2011). Chennai, India, pp. 136–140.
- [43] Puniach, E., Bieda, A., Cwiakala, P., et al. (2018). Use of Unmanned Aerial Vehicles (UAVs) for Updating Farmland Cadastral Data in Areas Subject to Landslides. ISPRS Int. J. Geoinf., 7(8):331. DOI: 10.3390/ijgi7080331.
- [44] Qui, K., Sun, K., Ding, K. et al. (2016). A fast and robust algorithm for road edges extraction from Lidar data. Int. Arch. Photogram., Remote Sens. Spat. Inf. Sci., 693–698. DOI: 10.5194/isprs-archivesXLI-B5-693-2016.
- [45] Rijsdijk, M., van Hinsbergh, W.H.M., Witteveen, W. et al. (2013). Unmanned Aerial Systems in the process of Juridical verification of Cadastral border. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XL-1/W2, 325–331. DOI: 10.5194/isprsarchives-XL-1-W2-325-2013.
- [46] Selvakumar, P., and Hariganesh, S. (2016). The performance analysis of edge detection algorithms for image processing. International Conference on Computing Technologies and Intelligent Data Engineering, 7-9 January Kovilpatti, India, pp. 1–5.
- [47] Sirmacek, B., and Unsalan, C. (2010). Road network extraction using edge detection and spatial voting. International Conference on Pattern Recognition, pp. 3117–3120. Istanbul, Turkey.
- [48] Taha, L.G.E., and Ibrahim, R.E. (2021). Assessment of Approaches for the Extraction of Building Footprints from Pléiades Images. Geomat. Environ. Eng., 15(4), 101–116. DOI: 10.7494/geom.2021.15.4.101.
- [49] Wassie, Y.A. (2016). Toward automatic cadastral boundary mapping from satellite imagery. Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geoinformation Science and Earth Observation.
- [50] Wassie, Y.A., Koeva, M.N., Bennett, R.M. et al. (2018). A procedure for semi-automated cadastral boundary feature extraction from high-resolution satellite imagery. J. Spat. Sci., 63(1), 75–92. DOI: 10.1080/14498596.2017.1345667.
- [51] Witharana, C., and Civco, D.L. (2014). Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ED2). ISPRS J. Photogram. Remote Sens., 87(1), 108–121. DOI: 10.1016/j.isprsjprs.2013.11.006.
- [52] Zevenbergen, J., and Bennett, R. (2015). The visible boundary: More than just a line between coordinates. In Proceedings of the GeoTech Rwanda, International Conference on Geospatial Technologies for Sustainable Urban and Rural Development, Kigali, Rwanda, 18-20 November, pp. 1–4.
- [53] Zhang, X., Xiao, P., Song, X. et al. (2013). Boundary-constrained multi-scale segmentation method for remote images.ISPRS J. Photogram. Remote Sens., 78, 15–25. DOI: 10.1016/j.isprsjprs.2013.01.002.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ede91b0b-ded0-4e03-9799-04d2cf399552