PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Study of Drought Stress in Sugar Beet and the Ways of its Minimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents peculiarities of drought stress identification in sugar beet and the alternatives for the use of additional components of cultivation technology aimed at increasing tolerance to water deficiency at the early stages of growth and development, namely: (i) soil amendment with moisture-retaining polymers; (ii) seed treatment with a growth regulator contributing to a better formation of the root system; and (iii) foliar application of micro fertilizers. The study of the state of the plant photosynthetic apparatus was carried out with the use of the devices for measuring chlorophyll fluorescence FLORATEST, developed at the Institute of Cybernetics of the National Academy of Sciences of Ukraine. The measurements were performed according to the guidelines on Determination of the Fluorescence Induction of plant Chlorophyll: Theoretical and Practical Bases of the Method. For better representativeness of the sampling, the measurements were performed at the same time of day and with the same intensity of illumination of the plants. As a result of the studies, the ratio of variable to maximum fluorescence (Fv/Fm) of the plant photosystem obtained with the use of a portable fluorometer was found to be the most effective method of rapid diagnostics of drought stress in plants. A high level of correlation was found between the concentration of free proline and the Fv/Fm ratio, with the correlation coefficient for sugar beet r = -0.96, which corresponds to a very strong relationship.
Twórcy
  • Institute of Bioenergy Crops and Sugar Beet NAAS, 25 Klinichna St., Kyiv, 03110, Ukraine
  • Institute of Bioenergy Crops and Sugar Beet NAAS, 25 Klinichna St., Kyiv, 03110, Ukraine
  • Institute of Bioenergy Crops and Sugar Beet NAAS, 25 Klinichna St., Kyiv, 03110, Ukraine
  • State Agricultural and Engineering University in Podillia, 13 Shevchenka St., Kamianets-Podilskyi, 32300, Ukraine
  • State Agricultural and Engineering University in Podillia, 13 Shevchenka St., Kamianets-Podilskyi, 32300, Ukraine
  • National University of Life and Environmental Sciences, 15 Heroiv Oborony St., Kyiv, 03041, Ukraine
  • National University of Life and Environmental Sciences, 15 Heroiv Oborony St., Kyiv, 03041, Ukraine
  • Institute of Bioenergy Crops and Sugar Beet NAAS, 25 Klinichna St., Kyiv, 03110, Ukraine
  • National Academy of Agricultural Sciences of Ukraine, 9 Mykhaila Omelianovycha-Pavlenka St., Kyiv, Ukraine
  • National University of Life and Environmental Sciences, 15 Heroiv Oborony St., Kyiv, 03041, Ukraine
Bibliografia
  • 1. Ain-Lhout F., Zunzunegui M., Diaz-Barradas M.C., Tirado R., Clavijo A., Garcia-Novo F. 2001. Comparison of proline accumulation in two Mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil, 230, 175–183.
  • 2. Al-Khayri J.M. 2002. Growth, proline accumulation and ion content in sodium chloride-stressed callus of date palm. In vitro. Cell Dev. Biol. Plant, 38, 79-82. DOI: 10.1079/IVP2001258.
  • 3. Anjum S.A., Xie X.Y., Wang L.C., Saleem M.F., Man C., Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res., 6, 2026–2032. DOI: 10.5897/AJAR10027
  • 4. Baker N.R. 2008. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol, 59, 89–113.
  • 5. Bartels D., Sunkar R. 2005. Drought and salt tolerance in plants. Crit. Rev. in Plant Sci., 23–58. DOI: 10.1080/07352680590910410
  • 6. Buschmann C. 2008. Recommended taking multiple measurements per leaf to find potential infection locations as a substitute for fluorescence leaf imaging. Botanik 2, Universität Karlsruhe (TH), 76128 Karlsruhe (Germany).
  • 7. Campbell L.G. 2002. Sugar beet quality improvement. J. Crop Prod., 5, 395–413. DOI: 10.1300/J144v05n01_16
  • 8. Carillo P., Mastrolonardo G., Nacca F., Parisi D., Verlotta A., Fuggi A. 2008. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biology, 35, 412–426.
  • 9. Carillo P., Gibon Y. 2011. Protocol: extraction and determination of proline. – PrometheusWiki. Available at: http://prometheuswiki.publish.csiro.au/tikiindex.php?page=PROTOCOL%3A+Extraction+and+determination+of+proline
  • 10. Cavender-Bares J., Fakhri A. 2004. From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies. From Chapter 29, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, 746–747.
  • 11. Chaves M.M., Flexas J., Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot., 103, 551–560. DOI: 10.1093/aob/mcn125
  • 12. Coca M., Garcia M.T., Gonzalez G., Pena M., Garcıa J.A. 2004. Study of colored components formed in sugar beet processing. Food Chem., 86, 421–433. DOI: 10.1016/j.foodchem.2003.09.017
  • 13. Conde A., Chaves M.M., Geros H. 2011. Membrane Transport, Sensing and Signaling in Plant Adaptation to Environmental Stress. Plant Cell Physiol., 52, 1583–1602. DOI: 10.1093/pcp/pcr107
  • 14. Cornic G., Fresneau C. 2002. Photosynthetic carbon reduction and car-bon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann. Bot., 89, 887–894.
  • 15. Delauney A.J., Verma D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J., 4, 215–223. DOI: 10.1046/j.1365-313x.1993.04020215.x
  • 16. Ermantraut E.R., Prysiazhniuk O.I., Shevchenko I.L. 2007. Statistical analysis of agronomic study data in the Statistica 6.0 software suite. Kyiv: PolihrafKonsaltynh.
  • 17. FAO STAT Crops statistics. 2020 http://www.fao.org/faostat/en/#data/QC
  • 18. Hoai N.T.T., Shim I.S. 2003. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Reg., 41, 159–164. DOI: 10.1023/A:1027305522741
  • 19. Iannucci A., Rascio A., Russo M., Di Fonzo N., Martiniello P. 2000. Physiological responses to water stress following a conditioning period in berseem clover. Plant Soil, 223, 217–227. DOI: 10.1023/A:1004842927653
  • 20. Kenter C., Hoffmann C., Marlander B. 2006. Effects of weather varia-bles on sugar beet yield development (Beta vulgaris L). Eur. J. Agron., 24, 62–69. DOI: 10.1016/j.eja.2005,05,001
  • 21. Koskeroglu S., Tuna A.L. 2010. The investigation on accumulation levels of proline and stress parameters of the maize (Zea mays L.) plants under salt and water stress. Acta Physiol. Plant., 32, 541–549. DOI: 10.1007/s11738-009-0431-z
  • 22. Liu J., Zhu J.K. 1997. Proline accumulation and saltstress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol., 114, 591-596.
  • 23. Luković J., Maksimović I., Zorić L., Nagl N., Perčić M., Polić D., Putnik-Delić M. 2009. Histological characteristics of sugar beet leaves potentially linked to drought tolerance. Ind. Crop. Prod., 30, 281-286. DOI: 10.1016/j.indcrop.2009,05,004
  • 24. Martínez Quesada J.J., Morillo Velarde R., Aguilera García Y., Infante Vázquez J.M. 2003. Growth of sugar beet under limited nitrogen conditions. In Sugar Beet Growth and Growth Modelling. Advances in Sugar Beet Research. Institut International de Recherches Betteravieres: Brussels, Belgium; 5, 33–45.
  • 25. Mezei S., Kovacev L., Nagl N. 2006. Sugar beet micropropagation. Biotechnol & Biotechnol. Eq., 20, 9-14.
  • 26. Milford G.F.J., Houghton B.J. 1999. An analysis of the variation in crown size in sugar-beet (Beta vulgaris) grown in England. Ann. Appl. Biol., 134, 225–232.
  • 27. Monreal J.A., Jimenez E.T., Remesal E., Morillo-Velarde R., Garcıa-Maurino S., Echevarrıa C. 2007. Proline content of sugar beet storage roots: response to water deficit and nitrogen fertilization at field conditions. Environ. Exp. Bot., 60: 257-267, DOI: 10.1016/j.envexpbot.2006,11,002
  • 28. Nayyar H., Walia D.P. 2003. Water stress induced accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol. Plant., 46, 275–279. DOI: 10.1023/A:1022867030790
  • 29. Prysiazhniuk O.I., Klymovych N.M., Polunina O.V., Yevchuk Ya.V., Tretiakova S.O., Kononenko L.M., Voitovska V.I., Mykhailovyn Yu.M. 2021. Methodology and organization of research in agriculture and food technology. K., LLC «Nilan-LTD».
  • 30. Prysiazhniuk O.I., Korovko I.I., Polovynchuk O.Yu., Shevchenko O.P., Shklyaruk S.M., Tanchin S.M., Navrotska E.E. 2016. Determination of Fluorescence Induction of Chlorophyll Plants: Theoretical and Practical Principles of Application of the Method. Kiev: Nilan-LTD.
  • 31. Qi A., Kenter C., Hoffmann C., Jaggard K.W. 2005. The Broom’s Barn sugar beet growth model and its adaptation to soils with varied available water content. Eur. J. Agron., 23, 108–122. DOI: 10.1016/j.eja.2004,09,007
  • 32. Qin F., Shinozaki K., Yamaguchi-Shinozaki K. 2011. Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance. Plant Cell Physiol., 52, 1569–1582. DOI: 10.1093/pcp/pcr106
  • 33. Ripley B.S., Redfern S.P., Dames J. 2004. Quantification of photosynthetic performance of phosphorus–deficient Sorghum by means of chlorophyll-a fluorescence kinetics. South African Journal of Science, 100, 615–618.
  • 34. Roy R., Mazumder P.B., Sharma G.D. 2009. Proline, catalase and root traits as indices of drought resistance in bold grained rice (Oryza sativa) genotypes. Afr. J. Biotech., 8, 6521–6528.
  • 35. Schick R. 2020. Considerations on the optimal processing capacity of beet sugar factories. Sugar Industry,145(6), 363–379. DOI: 10.36961/si24469
  • 36. Schreiber U. 2004. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview from Chapter 11, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, 279–319.
  • 37. Sholes J., Rolfe S. 1996. Photosynthesis in localized regions of oat leaves infected with crown rust (Puccinia coronata) Qualitative imaging of chlorophyll fluorescence. Planta, 199, 573–582.
  • 38. Song S.Q., Lei Y.B. Tian, X.R. 2005. Proline metabolism and cross tolerance to salinity and heat stress in geminating wheat seed. Russ. J. Plant Physiol., 52, 897–904. DOI: 10.1007/s11183-005-0117-3
  • 39. Szabados L., Savoure A. 2009. Proline: a multifunctional amino acid. Trends Plant Sci., 15, 89–97. DOI: 10.1016/j.tplants.2009,11,009
  • 40. Tripathy B.C., Bhatia B., Mohanty P. 1981. Inactivation of chloroplast photosynthetic electron transport activity by Ni ++. Biochim. Biophys. Acta, 638, 217–224.
  • 41. Tsvei Ya.P., Prysiazhniuk O.I., Horash O.S., Klymchuk O.V., Klymyshena R.I. and Shudrenko I.V. 2020. Effect of crop rotation and fertilization of sugar beet on the formation of maximum bioethanol yield. Plant Archives, 20(2), 268–274. http://www.plantarchives.org/List%20SI%2020%20SUPP-2,2020.html
  • 42. Valliyodan B., Nguyen H. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol., 9, 189–195. DOI: 10.1016/j.pbi.2006,01,019.
  • 43. van Kooten O., Snel J.F. 1990. The Use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25, 147–150.
  • 44. Vredenberg W. 2004. System Analysis and Photoelectrochemical Control of Chlorophyll Fluorescence in Terms of Trapping Models of Photosystem II: A Challenging View. Chlorophyll a Fluorescence pp. 133–172, Part of the Advances in Photosynthesis and Respiration book series (AIPH, 19).
  • 45. Yamada M., Morishita H., Urano K., Shiozaki N., Yamaguchi-Shinozaki K., Shinozaki K., Yoshiba Y. 2005. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot., 56, 1975–1981, DOI: 10.1093/jxb/eri195
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ede8136f-100e-4cef-b9b0-49b8fd6ab371
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.