Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of damping coefficient tests on the ZnAl27Cu2 alloy (ZL27). The tested alloy was cast into five types of molds made of different materials (a steel mold with an ambient temperature of 20°C, a steel mold with a temperature of 100°C, a humid green sand mold, a dried green sand mold and a mold made of foundry gypsum mass). The thermophysical properties of these materials are different, and that's affecting the rate of heat absorption from the cast. Different mold materials affect obtaining different cooling rates. The cooling rate significantly affects the microstructure of the tested alloy. The specimens of investigate alloy were subjected to ultrasound and microscopic tests to assess the alloy structure. The damping coefficient has been calculated on the basis of specimen measurements obtained with the use of the signal echo method. Research shows that high structural fragmentation adversely affects the damping properties of alloys is confirmed. On the other hand, very low cooling rate, resulting in the formation of large, overgrown dendrites, does not guarantee the highest vibration damping capacity for this particular alloy. It turns out in this case a humid green sand mold, (cooling rate of 5.1 K/s) guarantees the best damping properties for the ZL27 alloy.
Czasopismo
Rocznik
Tom
Strony
109--114
Opis fizyczny
Bibliogr. 15 poz., il., tab., wykr.
Twórcy
autor
- AGH University of Krakow, Poland
autor
- AGH University of Krakow, Poland
Bibliografia
- [1] Ritchie, I.G. & Pan, Z.-L. (1991). High damping metals and alloys. Metallurgical Transactions A. 22, 607-616. DOI: https://doi.org/10.1007/BF02670281.
- [2] Ritchie, I.G., Pan, Z.-L. & Goodwin, F.E. (1991). Characterization of the damping properties of die-cast zinc aluminum alloys. Metallurgical Transactions A. 22, 617-622. DOI: https://doi.org/10.1007/BF02670282.
- [3] Piwowarski, G. & Gracz, B. (2022). The influence of cooling rate on the damping characteristics of the ZnAl4Cu1 alloy. Journal of Casting & Materials Engineering. 6(3), 58-63. DOI: 10.7494/jcme.2022.6.3.58.
- [4] Girish, B.M., Prakash, K.R., Satish, B.M., Jain, P.K. & Kameshwary, D. (2011). Need for optimization of graphite particle reinforcement in ZA-27 alloy composites for tribological applications. Materials Science and Engineering: A. 530, 382-388. https://doi.org/10.1016/j.msea.2011.09.100.
- [5] Sirong Y., Zhenming H. & Kai C. (1996). Dry sliding friction and wear behaviour of short fibre reinforced zinc based alloy composites. Wear. 198(1-2), 108-114. https://doi.org/10.1016/0043-1648(96)06940-2.
- [6] Rzadkosz, S. (1995). The influence of chemical composition and phase transformations on the damping and mechanical properties of aluminum-zinc alloys. Rozprawy i monografie. Kraków: Wydawnictwa AGH. (in Polish).
- [7] Krajewski, W.K. (2013). Zinc-aluminum alloys. Types, properties, applications. Kraków: Wydawnictwo Naukowe AKAPIT. (in Polish).
- [8] Górny, M. & Sikora, G. (2015). Effect of titanium addition and cooling rate on primary α(Al) grains and tensile properties of Al-Cu alloy. Journal of Materials Engineering and Performance. 24(3), 1150-1156. https://doi.org/10.1007/s11665-014-1380-2.
- [9] Shabestari, S.G. & Malekan, M. (2005). Thermal analysis study of the effect of the cooling rate on the mictrostructure and solidification parameters of 319 aluminum alloy. Canadian Metallurgical Quarterly. 44(3), 305-312. DOI: https://doi.org/10.1179/000844305794409409.
- [10] Lelito, J., Żak, P.L., Gracz, B., Szucki, M., Kalisz, D., Malinowski, P., Suchy, J.S. & Krajewski, W.K. (2015). Determination of substrate log-normal distribution in the AZ91/SiCp composite. Metalurgija, 54(1), 204-206.
- [11] Piwowarski, G., Buraś, J. & Szucki, M. (2017). Influence of AlTi3C0.15 modification treatment on damping properties of ZnAl10 alloy. China Foundry. 14(4), 292-296. https://doi.org/10.1007/s41230-017-7070-6.
- [12] Petzow G. (1999) Metallographic Etching. Techniques for Metallography, Ceramography, Plastographyk., 2nd Ed. ASM International.
- [13] Nikolić, F. Štajduhar, I. & Čanađija, M. (2021) Casting microstructure inspection using computer vision: dendrite spacing in aluminum alloys. Metals. 11(5), 756, 1-13. https://doi.org/10.3390/met11050756.
- [14] Vandersluis, E. & Ravindran, C. (2019) Influence of solidification rate on the microstructure, mechanical properties, and thermal conductivity of cast A319 Al alloy. Journal of Materials Science. 54, https://doi.org/10.1007/s10853-018-3109-3. 4325-4339.
- [15] Djurdjevič, M. & Grzinčič, M. (2012) The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys. Archives of Foundry Engineering. 12(1), 19-24. DOI: 10.2478/v10266-012-0004 2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ede2bbab-914b-49f4-9f76-2511798bff36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.