PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy redistribution in autonomous hybridization of agent-based computing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Evolutionary multi-agent systems (EMAS) are very good at dealing with diffi cult, multi-dimensional problems. Research is currently underway to improve this algorithm, giving agents even more freedom not only to solve the problem, but also to make decisions about the behavior of the algorithm. One way is to hybridize this algorithm with other existing algorithms to create the Hybrid Evolutionary Multi Agent-System (HEMAS). Unfortunately, such connections generate problems in the form of unbalanced agent energy levels. One solution is to use an agent energy redistribution operator. The article presents three different proposals for such redistribution operators, compared them with each other and selected the best based on the results of numerous experiments.
Wydawca
Czasopismo
Rocznik
Tom
Strony
345–365
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Byrski A., Kisiel-Dorohinicki M.: Immune-Based Optimization of Predicting Neural Networks. In: V.S. Sunderam, G.D. van Albada, P.M.A. Sloot, J.J. Dongarra (eds.), Computational Science – ICCS 2005. ICCS 2005, Lecture Notes in Computer Science, vol. 3516, pp. 703–710, Berlin–Heidelberg, 2005. doi: 10.1007/11428862_96.
  • [2] Byrski A., Kisiel-Dorohinicki M.: Agent-Based Evolutionary and Immunologi cal Optimization. In: Y. Shi, G.D. van Albada, J.J. Dongarra, P.M.A. Sloot (eds.), Computational Science – ICCS 2007. ICCS 2007, Lecture Notes in Com puter Science, vol. 4488, pp. 928+, Berlin–Heidelberg, 2007. doi: 10.1007/978-3-540-72586-2_129.
  • [3] Byrski A., Schaefer R.: Formal model for agent-based asynchronous evolutionary computation. In: 2009 IEEE Congress on Evolutionary Computation, pp. 78–85, 2009. doi: 10.1109/CEC.2009.4982933.
  • [4] Byrski A., Schaefer R., Smolka M., Cotta C.: Asymptotic guarantee of success for multi-agent memetic systems, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 61(1), pp. 257–278, 2013. doi: 10.2478/bpasts-2013-0025.
  • [5] Cetnarowicz K., Kisiel-Dorohinicki M., Nawarecki E.: The Application of Evo lution Process in Multi-Agent World (MAW) to the Prediction System. In: M. Tokoro (ed.), Proceedings of the Second International Conference on Mul tiagent Systems (ICMAS’96), pp. 26–32, AAAI Press, 1996.
  • [6] Durillo J.J., Nebro A.J.: jMetal: A Java framework for multi-objective opti mization, Advances in Engineering Software, vol. 42(10), pp. 760–771, 2011. doi: 10.1016/j.advengsoft.2011.05.014.
  • [7] Faber L., Piętak K., Byrski A., Kisiel-Dorohinicki M.: Agent-Based Simulation in AgE Framework. In: A. Byrski, Z. Oplatkova, M. Carvalho, M. Kisiel- Dorohinicki (eds.), Advances in Intelligent Modelling and Simulation: Simulation Tools and Applications, Studies in Computational Intelligence, vol. 416, pp. 55–83, Springer, Berlin, Heidelberg, 2012.
  • [8] Godzik M., Grochal B., Piekarz J., Sieniawski M., Byrski A., Kisiel-Doro hinicki M.: Differential Evolution in Agent-Based Computing. In: Intelli gent Information and Database Systems. ACIIDS 2019, Lecture Notes in Com puter Science, vol. 11432, pp. 228–241, Springer, Cham, 2019. doi: 10.1007/978-3-030-14802-7_20.
  • [9] Godzik M., Idzik M., Piętak K., Byrski A., Kisiel-Dorohinicki M.: Autonomous Hybridization of Agent-Based Computing. In: Computational Collective In telligence. 12th International Conference, ICCCI 2020, Da Nang, Vietnam, Nov. 30–Dec. 3, 2020, Proceedings, vol. 12496, pp. 139–151, Springer Interna tional Publishing, 2020.
  • [10] Kisiel-Dorohinicki M., Dobrowolski G., Nawarecki E.: Agent Populations as Computational Intelligence. In: Neural Networks and Soft Computing, Advances in Soft Computing, vol. 19, pp. 608–613, Physica-Verlag HD, Heidelberg, 2003. doi: 10.1007/978-3-7908-1902-1_93.
  • [11] López-Ibáñez M., Dubois-Lacoste J., Cáceres L.P., Birattari M., Stützle T.: The irace package: Iterated racing for automatic algorithm configuration, Operations Research Perspectives, vol. 3, pp. 43–58, 2016. doi: 10.1016/j.orp.2016.09.002.
  • [12] Placzkiewicz L., Sendera M., Szlachta A., Paciorek M., Byrski A., Kisiel-Dorohinicki M., Godzik M.: Hybrid Swarm and Agent-Based Evolutionary Op timization. In: Y. Shi, H. Fu, Y. Tian, V.V. Krzhizhanovskaya, M.H. Lees, J.J. Dongarra, P.M.A. Sloot (eds.), Computational Science – ICCS 2018. ICCS 2018, Lecture Notes in Computer Science, vol. 10861, pp. 89–102, Springer, 2018. doi: 10.1007/978-3-319-93701-4_7.
  • [13] Podsiadło K., Łoś M., Siwik L., Woźniak M.: An Algorithm for Tensor Product Approximation of Three-Dimensional Material Data for Implicit Dynamics Simulations. In: Y. Shi, H. Fu, Y. Tian, V.V. Krzhizhanovskaya, M.H. Lees, J. Don garra, P.M.A. Sloot (eds.), Computational Science – ICCS 2018, pp. 156–168, Springer International Publishing, Cham, 2018.
  • [14] Polnik W., Stobiecki J., Byrski A., Kisiel-Dorohinicki M.: Ant colony optimization–evolutionary hybrid optimization with translation of problem representa tion, Computational Intelligence, vol. 37(2), pp. 891–923, 2021. doi: 10.1111/coin.12439.
  • [15] Schaefer R., Byrski A., Smolka M.: The island model as a Markov dynamic system, International Journal of Applied Mathematics and Computer Science, vol. 22(4), pp. 971–984, 2012. doi: 10.2478/v10006-012-0072-z.
  • [16] Siwik L., Łoś M., Kisiel-Dorohinicki M., Byrski A.: Hybridization of Isogeometric Finite Element Method and Evolutionary Multi-Agent System as a Tool-Set for Multiobjective Optimization of Liquid Fossil Fuel Reserves Exploitation with Minimizing Groundwater Contamination, Procedia Computer Science, vol. 80, pp. 792–803, 2016. doi: 10.1016/j.procs.2016.05.369.
  • [17] Talbi E.G.: A Taxonomy of Hybrid Metaheuristics, Journal of Heuristics, vol. 8, pp. 541–564, 2002.
  • [18] Wolpert D.H., Macready W.G.: No Free Lunch Theorems for Optimization, IEEE Transactions on Evolutionary Computation, vol. 67(1), pp. 67–82, 1997.
Uwagi
PL
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ede26f59-838d-4db9-b364-725a8bf5c222
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.