PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Computer aided stereometric evaluation of porostructural-osteoconductive properties of intra-osseous implant porous coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proper interaction of bone tissue - the natural porous biomaterial - with a porous coated intra-osseous implant is conditioned, among others, by the implant porous coating poroaccessibility for bone tissue adaptive ingrowth. The poroaccessibility is the ability of implant porous coating outer layer to accommodate the ingrowing bone tissue filling in its pore space and effective new formed bone mineralizing in the pores to form a biomechanically functional bone-implant fixation. The functional features of the microtopography of intra-osseous implant porous surfaces together with the porosity of pore space of the outer layer of the porous coating are called by bioengineers the porostructural-osteoconductive properties of the porous coated implant. The properties are crucial for successful adaptive bone tissue ingrowth and further long-term (secondary) biomechanical stability of the boneimplant interface. The poroaccessibility of intra-osseous implants porous coating outer layers is characterized by - the introduced in our previous papers - set of stereometric parameters of poroaccessibility: the effective volumetric porosity φVef, the index of the porous coating space capacity VPM, the representative surface porosity φSrep, the representative pore size pSrep, the representative angle of the poroaccessibility Ωrep and the bone-implant interface adhesive surface enlargement index ψ. Presented in this paper, an original method of evaluation of the porostructural-osteoconductive properties of intra-osseous implant porous coatings outer layer by means of the parameters of poroaccessibility was preliminary verified during experimental tests performed on the representative examples of porous coated femoral stems and acetabular cups of various hip endoprostheses. The computer-aided stereometric evaluation of the microstructure of implant porous coatings outer layer can be now realized by the authoring application software PoroAccess_1.0 elaborated in our research team in Java programming language.
Rocznik
Strony
431--442
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Department of Medical Bioengineering Fundamentals, Institute of Technology, Casimir the Great University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Laboratory of Biomaterials and Bioprocesses Engineering, Department of Process Engineering, Institute of Technology and Chemical Engineering, Poznan University of Technology, Marii Sklodowskiej-Curie 2, 60-965 Poznan, Poland
autor
  • Department of Medical Bioengineering Fundamentals, Institute of Technology, Casimir the Great University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Laboratory of Biomaterials and Bioprocesses Engineering, Department of Process Engineering, Institute of Technology and Chemical Engineering, Poznan University of Technology, Marii Sklodowskiej-Curie 2, 60-965 Poznan, Poland
autor
  • Department of Spine Surgery, Oncologic Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956 N° 135/147, 61-545 Poznan, Poland
Bibliografia
  • [1] Ryan G., Pandit A., Apatsidis D.P. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27, 2651-2670.
  • [2] Landor I., Vavrik P., Sosna A., Jahoda D., Hahn H., Daniel M. (2007). Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch. Orthop. Trauma Surg., 127, 81-89.
  • [3] De Groot K., Geesink R., Klein, C.P., Serekian P. (1987). Plasma sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res., 21, 1375-1381.
  • [4] Sun L., Berndt C.C., Gross K.A., Kucuk A. (2001). Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J. Biomed. Mater. Res., 58, 570-592.
  • [5] Cook S.D., Walsh K.A., Haddad R.J. Jr (1985). Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants. Clin. Orthop. Rel. Res., 193, 271-280.
  • [6] Galante J., Rostocker W. (1973). Fiber metal composites in fixation of skeletal prosthesis. J. Biomed. Mater. Res., 7, 43-61.
  • [7] Pilliar R.M. (1987). Porous-surfaced metallic implants for orthopaedic application. J. Biomed. Mater. Res., 21, 1-33.
  • [8] Pilliar R.M. (1983). Powder metal-made orthopaedic implants with porous surface for fixation by tissue ingrowth, Clin. Orthop., 176, 42-51.
  • [9] Thieme M., Wieters K.P., Bergner F., Scharnweber D., Worch H., Ndop J. (2001). Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants, J. Mater. Sci. Mater. Med., 12, 225-231.
  • [10] Yang Y.Z., Tian J.M., Tian J.T., Chen Z.Q., Deng X.J., Zhang D.H. (2000). Preparation of graded porous titanium coatings on titanium implant materials by plasma spraying. J. Biomed. Mater. Res., 52, 333-337.
  • [11] Bragdon, C.R., Jasty M., Greene M., Rubash H.E., Harris W.H. (2004). Biologic Fixation of Total Hip Implants: Insights Gained from a Series of Canine Studies, J. Bone Joint Surg. Am., 86, 105-117.
  • [12] Giavaresi G., Fini M., Cigada A., Chiesa R., Rondelli G., Rimondini L., Torricelli P., Aldini N.N., Giardino R. (2003). Mechanical and histomorphometric evaluations of titanium implants with different surface treatment inserted in sheep cortical bone, Biomaterials, 24, 1583-1594.
  • [13] Porter A.E., Hobbs L.W., Rosen V.B., Spector M. (2002). Ultrastructure of the plasma sprayed hydroxyapatite-bone interface predisposing to bone bonding, Biomaterials, 23, 725-733.
  • [14] Svehla M., Morberg P., Bruce W., Zicat B., Walsh W.R. (2002). The effect of substrate roughness and hydroxyapatite coating thickness on implant shear strength, J. Arthrop., 17, 304-311.
  • [15] Winiecki M. (2006). The Investigation on the Microgeometrical Constructional Properties of Porous Endoosseous Implants and the Influence of these Properties on the Strength of the Bone-Implant Model Fixation, PhD Thesis /dissertation supervisor: R. Uklejewski/, Poznan University of Technology, Faculty of Working Machines and Transportations, Poznan.
  • [16] Stout K.J., Blunt L., Dong W., Mainsah E., Luo N., Mathia T., Sullivan P., Zahouani H. (2000). The Development Methods for Characterisation of Roughness in 3D. Penton Press, Huddersfield.
  • [17] Rogala P., Uklejewski R., Stryła W. (2002). Modern poroelastic biomechanical model of bone tissue. Part 1. Biomechanical function of fluids in bone, Chir. Org. Motus Orthop. Pol., 67, 309-316.
  • [18] Rogala P., Uklejewski R., Stryła W. (2002). Modern poroelastic biomechanical model of bone tissue. Part 2. Structure of pore space in cortical and trabecular bone, Chir. Org. Motus Orthop. Pol., 67, 395-403.
  • [19] Stryła W., Uklejewski R., Rogala P. (2004). Modern two-phase biomechano-electrophysiological model of bone tissue. Implications for rehabilitation research and practice, Intern. J. Rehab. Res., 27 Suppl. 1, 175-177.
  • [20] Mielniczuk J., Uklejewski R., Winiecki M., Rogala P. (2006). The poroparameters for evaluation of structural-osteoinductive and mechanical properties of bone-implant porous coating interface. Part 1. Theoretical background on the basis of the poroelastic model of bone, J. Biomech., 39 Suppl. 1, S14.
  • [21] Uklejewski R., Winiecki M., Rogala P. (2006). On the structural-adaptive compatibility of bone with porous coated implants on the base of the traditional one-phase and the modern two-phase poroelastic biomechanical model of bone tissue. Eng. Biomat., 54-55, 1-13.
  • [22] Uklejewski R., Winiecki M., Rogala P., Mielniczuk J., Auguściński A., Stryła W. (2007). Structural and biomechanical biocompatibility in bone-porous implant fixation region - on the basis of two-phase poroelastic biomechanical model of bone tissue, Eng. Biomat., 69-72, 93-95.
  • [23] Uklejewski R., Winiecki M., Mielniczuk J., Rogala P., Auguściński A. (2008). The poroaccessibility parameters for three-dimensional characterization of orthopedic implants porous coatings, Metrol. Meas. Syst., 15, 215-226.
  • [24] Uklejewski R., Winiecki M., Mielniczuk J., Auguściński A., Rogala P. (2007). Application of surface texture analysis for biostructural evaluation of orthopaedic implants porous coatings, Proceedings of the 6th Seminar: “Surface Stereometry: Measurement, Research, Applications”. Poznań, 25-26.05.2006, Pro Net, Poznań, 61-73.
  • [25] Uklejewski R., Winiecki M., Rogala P. (2007). On the characterization of orthopaedic implants porous coatings with three-dimensional roughness measurement, Proceedings of the 11th International Conference on Metrology and Properties of Engineering Surfaces, Huddersfield, UK, 16 20.07.2007, 241-245.
  • [26] Uklejewski R., Winiecki M., Rogala P., Radomski W. (2011). The characterization of structural and osteoinductive properties of orthopaedic implants porous coatings with the set of 3D poroaccesibility parameters. Proceedings of the 13th International Conference on Metrology and Properties of Engineering Surfaces, London, UK, 12-15.04.2011, 103-107.
  • [27] Abbott E.J., Firestone F.A. (1933). Specifying surface quality: a method based on accurate measurement and comparison, Mech. Eng., 55, 569-572.
  • [28] Brooker A.F., Collier J.P. (1984). Evidence of bone ingrowth into a porous-coated prosthesis, J. Bone Joint Surg. Am., 66, 619-621.
Uwagi
EN
This research was supported by the Polish Ministry of Science by research project no 4T07C05629 (2005-2008): “Experimental investigation and design of the constructional properties of bone-porous implants fixations” and the research project no NN518412638 (2010-2014): “The optimization of the manufacturing directives and the termochemical surface modification of prototypes of the minimally invasive RHA endoprostheses and porous bone implants” (Head of the projects: R. Uklejewski).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ede1d64c-7636-4551-afe3-f21c77b0a964
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.