PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of radiopharmaceuticals on articular cartilage’s mechanical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As radiation science and technology advances, nuclear medicine applications are increasing worldwide which necessitate the understanding of biological implications of such practices. Ionizing radiation has been shown to cause degraded matrix and reduced proteoglycan synthesis in cartilage, and the late consequences of which may include degenerative arthritis or arthropathy. Although degenerative effects of the ionizing radiation on cartilage tissue have been demonstrated, the effects on the mechanical properties of articular cartilage are largely unknown. The radiopharmaceuticals, technetium-99m and technetium-99m sestamibi, were utilized on bovine articular cartilage to investigate these effects. We used two different mechanical tests to determine the mechanical properties of articular cartilage. Dynamic and static mechanical tests were applied to calculate compressive modulus for articular cartilage. We observed clearly higher control modulus values than that of experimental groups which account for lesser stiffness in the exposed cartilage. In conclusion, compressive moduli of bovine articular cartilage were found to decrease after radiopharmaceutical exposure, after both instantaneous and equilibrium mechanical experiments.
Czasopismo
Rocznik
Strony
71--74
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Department of Physics Faculty of Science & Art Mehmet Akif Ersoy University Burdur, 15030 Turkey
autor
  • Department of Physics Faculty of Science & Art Mehmet Akif Ersoy University Burdur, 15030 Turkey
Bibliografia
  • 1. Saintigny, Y., Cruet-Hennequart, S., Hamdi, D. H., Chevalier, F., & Lefaix, J. L. (2005). Impact of therapeutic irradiation on healthy articular cartilage. Radiat. Res., 183(2), 135–146. DOI: 10.1667/RR13928.1.
  • 2. Padalkar, M. V., Spencer, R. G., & Pleshko, N. (2013).Near infrared spectroscopic evaluation of water in hyaline cartilage. Ann. Biomed. Eng., 41(11), 2426–2436.DOI: 10.1007/s10439-013-0844-0.
  • 3. Li, G., Thomson, M., Dicarlo, E., Yang, X., Nestor,B., Bostrom, M. P. G., & Camacho, N. P. (2005). A chemometric analysis for evaluation of early-stage cartilage degradation by infrared fiber-optic probe spectroscopy. Appl. Spectrosc., 59(12), 1527–1533.DOI: 10.1366/000370205775142593.
  • 4. Baxter, N. N., Habermann, E. B., Tepper, J. E., Durham,S. B., & Virnig, B. A. (2005). Risk of pelvic fractures in older women following pelvic irradiation. JAMA,294(20), 2587–2593. DOI: 10.1001/jama.294.20.2587.
  • 5. Willey, J. S., Livingston, E. W., Robbins, M. E., Bourland, J. D., Tirado-Lee, L., Smith-Sielicki, H., & Bateman, T. A. (2010). Risedronate prevents early radiation-induced osteoporosis in mice at multiple skeletal locations. Bone, 46(1), 101–111. DOI:10.1016/j.bone.2009.09.002.
  • 6. Kolár, J., Vrabec, R., & Chyba, J. (1967). Arthropathies after irradiation. J. Bone Joint Surg. Am., 49(6),1157–1166. DOI: 10.2106/00004623-196749060-00013.
  • 7. Lindburg, C. A., Willey, J. S., & Dean, D. (2013) Effects of low dose X-ray irradiation on porcine articular cartilage explants. J. Orthop. Res., 31(11), 1780–1785.DOI: 10.1002/jor.22406.
  • 8. Hugenberg, S. T., Myers, S. L., & Brandt, K. D.(1989). Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation. Arthritis. Rheum., 32(4), 468–474. DOI: 10.1002/anr.1780320417.
  • 9. Willey, J. S., Long, D. L., Vanderman, K. S., & Loeser, R. F. (2013). Ionizing radiation causes active degradation and reduces matrix synthesis in articular cartilage. Int. J. Radiat. Biol., 89(4), 268–277. DOI:10.3109/09553002.2013.747015.
  • 10. Lindburg, A. B., Willey, J. S., DesJardins, D. J., & Dean, D. (2011). Effect of X-ray irradiation on porcine and murine cartilage modulus. In Society for Biomaterials 2011 Annual Meeting and Exposition (abstract#794). Available from http://abstracts.biomaterials.org/data/papers/2011/794.pdf.
  • 11. Yin, J., Xia, Y., & Lu, M. (2012). Concentration profiles of collagen and proteoglycan in articular cartilage by Fourier transform infrared imaging and principal component regression. Spectroc. Acta PtA-Mol. Biomolec. Spectr., 88, 90–96. DOI: 10.1016/j.saa.2011.12.002.
  • 12. Long, D. L., & Loeser, R. F. (2010). P38gamma mitogen-activated protein kinase suppresses chondrocyte production of MMP-13 in response to catabolic stimulation. Osteoarthr. Cartil., 18(9), 1203–1210. DOI: 10.1016/j.joca.2010.05.016.
  • 13. Ailland, J., Kampen, W. U., Schünke, M., Trentmann, J., & Kurz, B. (2003). Beta irradiation decreases collagen type II synthesis and increases nitric oxide production and cell death in articular chondrocytes. Ann. Rheum. Dis., 62(11), 1054–1060. DOI: 10.1136/ard.62.11.1054.
  • 14. Cicek, E., & Cakmak, E. (2018). Hydrogen peroxide induced oxidative damage on mineral density and mechanical properties of bone. Brazilian Archives of Biology and Technology, 61, e18180043. DOI:10.1590/1678-4324-2018180043.
  • 15. Cicek, E. (2016). Effect of X-ray irradiation on articular cartilage mechanical properties. Acta Phys. Pol. A, 129(2), 200–202. DOI: 10.12693/APhysPolA.129.200.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ede13519-8e3d-49f2-a82c-b569aa9c79f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.