PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of the fixed carbon and ash in blast furnace dust on its co-reduction with seaside titanomagnetite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Previous research has found that the fixed carbon in blast furnace dust (BFD) could be used as the reductant of co-reduction roasting of the iron oxides in seaside titanomagnetite and BFD to replace coals. This research studied the influence mechanism of the fixed carbon and ash in BFD on coreduction.Results showed that both fixed carbon and ash in BFD promoted the reduction of iron, while ash had adverse effect on separation of titanium and iron. The main mechanism was as follows: The ash in BFD accelerated melting. In addition, the iron oxide in the ash of BFD could be reduced to metallic iron cores more easily in the initial stage, providing the site of inhomogeneous core and promoting the aggregation and growth of metallic iron. Furthermore, the fixed carbon mainly reacted with iron ore by solid-solid reaction, leading to a rapid reduction rate and a high utilization rate of fixed carbon.
Rocznik
Strony
1323--1337
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., wz.
Twórcy
  • School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, China
autor
  • State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China
  • State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
  • BRYAN, K.R., ROBINSON, A., BRIGGS, R.M., 2007. Spatial and temporal variability of titanomagnetite placer deposits on a predominantly black sand beach. Mar. Geol. 236, 45-59.
  • CAO, Y.Y., DUAN, D.P., ZHOU, E., SUN, T.C., 2018. The function of blast furnace dust as reductant on simultaneous reduction of high-phosphorus oolitic hematite. Ironmak. Steelmak. 1-11.
  • CHEN, D.S., SONG, B., WANG, L.N., QI, T., WANG, Y., WANG, W.J., 2011. Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal. Miner. Eng. 24, 864-869.
  • CHUANG, H., HWANG, W., LIU, S., 2010. Effects of graphite, SiO2, and Fe2O3 on the crushing strength of direct reduced iron from the carbothermic reduction of residual materials. Mater. Trans. 51, 557-563.
  • CRUZ-SÁNCHEZ, E., ÁLVAREZ-CASTRO, J.F., RAMı́REZ-PICADO, J.A., MATUTES-AQUINO, J.A., 2004. Study of titanomagnetite sands from Costa Rica. J. Alloy. Compd. 369, 265-268.
  • DMITRIEV, A.N., NOSKOV, V.Y., 2017. Physicochemical and thermophysical bases of titanomagnetite ore treatment. Metallurg. 61, 382-386.
  • GAO, E., SUN, T., LIU, Z., GENG, C., XU, C., 2016. Effect of sodium sulfate on direct reduction of beach titanomagnetite for separation of iron and titanium. J. Iron Steel Res. Int. 23, 428-433.
  • HALLI, P., TASKINEN, P., ERIҪ, R.H., 2017. Mechanisms and kinetics of solid state reduction of titano magnetite ore with methane. J. Sustain. Metall. 3, 191-206.
  • HU, T., LV, X.W., BAI, C.G., QIU, G. B., 2014. Isothermal reduction of titanomagnetite concentrates containing coal. Int. J. Min. Met. Mater. 21, 131-137.
  • HU, T., LV, X., BAI, C., LUN, Z., QIU, G., 2013. Carbothermic reduction of titanomagnetite concentrates with ferrosilicon addition. ISIJ Int. 53, 557-563.
  • HU, T., SUN, T., KOU, J., CHAO, G., WANG, X., CHAO, CH., 2017. Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust. Int. J. Miner. Process. 165, 28-33.
  • JUNG, S., 2014. Thermogravimetry and reaction gas analysis of the carbothermic reduction of titanomagnetite ores with char. ISIJ Int. 54, 781-790.
  • KOPKOVA, E.K., SHCHELOKOVA, E.A., GROMOV, P.B., 2015. Processing of titanomagnetite concentrate with a hydrochloric extract of n-octanol. Hydrometallurgy 156, 21-27.
  • LANGOVA, S., MATÝSEK, D., 2010. Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation. Hydrometallurgy. 101, 171-173.
  • LYBERATOS, A., 2007. Temperature dependence of the magnetization of titanomagnetites. J. Magn. Magn. Mater. 311, 560-564.
  • SHEN, L., QIAO, Y., YONG, G., TAN, J., 2013. Preparation and formation mechanism of nano-iron oxide black pigment from blast furnace flue dust. Ceram. Int. 39, 737-744.
  • SUN, H., ADETORO, A.A., PAN, F., WANG, Z., ZHU, Q., 2017. Effects of high-temperature preoxidation on the titanomagnetite ore structure and reduction behaviors in fluidized bed. Metall. Mater. Trans. B. 48, 1-10.
  • SUN, H., WANG, J., HAN, Y., SHE, X., XUE, Q., 2013. Reduction mechanism of titanomagnetite concentrate by hydrogen. Int. J. Miner. Process. 125, 122-128.
  • WU, Z.J., WANG, L.C., GAO, Z.F., LIU, W.M., WU, X.R., 2016. Recycling blast furnace dust into metals (Al, Zn and Ti)- doped hematite with enhanced photocatalytic activity. J. Environ. Chem. Eng. 4, 341-345.
  • XING, X.D., CHEN, Y.F., LIU, Y.R., 2018. Study of the reduction mechanism of ironsands with addition of blast furnace bag dust. Metall. Res. Technol. 115, 214-222.
  • ZHANG, D., ZHANG, X., YANG, T., RAO, S., HU, W., LIU, W., CHEN, L., 2017. Selective leaching of zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems. Hydrometallurgy 169, 219-228.
  • ZHANG, Y., LI, S., WANG, X., LI, X., 2015. Coagulation performance and mechanism of polyaluminum ferric chloride (PAFC) coagulant synthesized using blast furnace dust. Sep. Purif. Technol. 154, 345-350.
  • ZHAO, D., ZHANG, J., WANG, G., CONEJO, A.N., XU, R., WANG, H., ZHONG, J., 2016. Structure characteristics and combustibility of carbonaceous materials from blast furnace flue dust. Appl. Therm. Eng. 108, 1168-1177.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eddf1b43-30fa-4b81-b549-581f66ca550e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.