PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prognozowanie wytrzymałości na ściskanie betonu natryskowego przy zastosowaniu inteligentnych metod obliczeniowych: sztucznej sieci neuronowej i regresji wektorów wspierających

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Prediction of shotcrete compressive strength using Intelligent Methods; Neural Network and Support Vector Regression
Języki publikacji
PL EN
Abstrakty
PL
Wytrzymałość na ściskanie jest jedną z najważniejszych właściwości betonu. Wynik badania 28-dniowej wytrzymałości na ściskanie betonu lub betonu natryskowego jest wskaźnikiem ich jakości, który bardzo zależy od składu mieszanki betonowej. Niektóre czynniki takie jak rodzaj cementu, stosunek woda/cement, suma drobnego i grubego kruszywa w mieszance, domieszki i in. wpływają na wytrzymałość betonu. Bardzo trudno jest prognozować wytrzymałość betonu z powodu dużej liczby takich parametrów. Obecnie, dysponując inteligentnymi metodami obliczeniowymi, modelowanie odgrywa szczególną rolę w naukach inżynierskich i prognozowaniu zachowania się materiału. Dlatego w artykule przedstawiono wyniki badań różnych mieszanek betonu natryskiwanego zawierającego pył krzemionkowy i zbiory ich wytrzymałości na ściskanie po 28 dniach. Modele ANN oraz SVR zastosowano do prognozowania wytrzymałości na ściskanie betonu natryskowego biorąc pod uwagę parametry mieszanek betonu natryskiwanego jako dane wejściowe. Współczynnik korelacji (R), średni bezwzględny błąd procentowy (MAPE) i pierwiastek błędu średniokwadratowego (RMSE) są statystykami użytymi jako miary efektywności proponowanych modeli prognostycznych. Porównanie wszystkich wyników obliczeń z wynikami doświadczeń wskazuje na zadawalającą dokładność wyników uzyskiwanych przy użyciu proponowanych inteligentnych metod obliczeniowych. Wyniki przeprowadzonych badań wskazują, że zarówno model ANN jak i model SVR są dogodnymi narzędziami do oszacowania wytrzymałości na ściskanie betonu natryskiwanego.
EN
Compressive strength is one of the most important mechanical properties of concrete. 28-day compressive strength test is the acceptance measure of concrete or shotcrete, which is highly affected by the mix design. Some parameters like water/cement ratio, amount of fine and coarse aggregates in mix, admixtures and so on affect shotcrete strength. Due to the large number of such parameters, it is very difficult to predict the shotcrete strength. Today, owing to intelligent methods, modeling has a particular role in engineering sciences and predicting material behavior. Therefore, this paper examines different mix designs of shotcrete containing microsilica and records their 28-day compressive strength. Regarding shotcrete mix design parameters as inputs, ANN and SVR models were used to predict compressive strength of shotcretes. The correlation coefficient (R), mean absolute percentage error (MAPE) and the root mean square error (RMSE) statics are used for performance evaluation of proposed predictive models. All of the results showed that the accuracy of the proposed soft computing methods is quite satisfactory as compared to experimental results. The finding of this study indicated that the both ANN and SVM models are sufficient tools for estimating the compressive strength of shotcrete.
Czasopismo
Rocznik
Strony
126--136
Opis fizyczny
Bibliogr. 32 poz., il., tab.
Twórcy
  • Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
  • Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
Bibliografia
  • 1. S. Prusek, M. Rotkegel, Ł. Małecki, Laboratory tests and numerical modelling of strength-deformation parameters of a shotcrete lining. Engineering Structures 75, 353-362 (2014).
  • 2. D.-G. Kim, G.-P. Lee, G.-J. Bae, Compressive and adhesive strengths of shotcrete deteriorated by hazardous components in the groundwater. Tunnelling and Underground Space Technology 21, 323 (2006).
  • 3. A. Hubáček, J. Brožovský, R. Hela, Comparison of Properties of Shotcrete Tested Using Destructive and Non-destructive Methods. Procedia Engineering 65, 63-68 (2013).
  • 4. F. Khademi, M. Akbari, S. M. Jamal, M. Nikoo, Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Frontiers of Structural and Civil Engineering 11, 90-99 (2017).
  • 5. S. Tsivilis, G. Parissakis, A mathematical model for the prediction of cement strength. Cement and Concrete Research 25, 9-14 (1995).
  • 6. M. F. M. Zain, S. M. Abd, Multiple regression model for compressive strength prediction of high performance concrete. Journal of applied sciences 9, 155-160 (2009).
  • 7. U. Atici, Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Systems with Applications 38, 9609-9618 (2011).
  • 8. F. Khademi, S. M. Jamal, Estimating the compressive strength of concrete using multiple linear regression and adaptive neuro-fuzzy inference system. International Journal of Structural Engineering 8, 20-31 (2017).
  • 9. A. Öztaş et al., Predicting the compressive strength and slump of high strength concrete using neural network. Construction and Building Materials 20, 769-775 (2006).
  • 10. A. Nazari, Computer-aided prediction of physical and mechanical properties of high strength concrete containing Fe2O3 nanoparticles. Cement Wapno Beton 79, 265-285 (2012).
  • 11. S. Kostić, D. Vasović, Prediction model for compressive strength of basic concrete mixture using artificial neural networks. Neural Comput & Applic 26, 1005-1024 (2015).
  • 12. T. K. Erdem, G. Tayfur, Ö. Kirca, Experimental and modeling study of strength of high strength concrete containing binary and ternary binders. Cement Wapno Beton 78, 224-237 (2011).
  • 13. E. Ozgan, Artificial neural network based modelling of the Marshall Stability of asphalt concrete. Expert Systems with Applications 38, 6025-6030 (2011).
  • 14. F. F. Martins, A. Camões, Prediction of compressive strength of concrete containing fly ash using data mining techniques. Cement Wapno Beton 80, 39-51 (2013).
  • 15. E. Akbari et al., Analytical modeling and simulation of I–V characteristics in carbon nanotube based gas sensors using ANN and SVR methods. Chemometrics and Intelligent Laboratory Systems 137, 173-180 (2014).
  • 16. H.-G. Ni, J.-Z. Wang, Prediction of compressive strength of concrete by neural networks. Cement and Concrete Research 30, 1245-1250 (2000).
  • 17. J. Sobhani, M. Najimi, A. R. Pourkhorshidi, T. Parhizkar, Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Construction and Building Materials 24, 709-718 (2010).
  • 18. H. M. Elsanadedy, Y. A. Al-Salloum, H. Abbas, S. H. Alsayed, Prediction of strength parameters of FRP-confined concrete. Composites Part B: Engineering 43, 228-239 (2012).
  • 19. V. N. Vapnik, An overview of statistical learning theory. IEEE transactions on neural networks 10, 988-999 (1999).
  • 20. J.-S. Chou, C.-F. Tsai, Concrete compressive strength analysis using a combined classification and regression technique. Automation in Construction 24, 52-60 (2012).
  • 21. J. Sobhani, M. Khanzadi, A. Movahedian, Support vector machine for prediction of the compressive strength of no-slump concrete. Computers and Concrete 11, 337-350 (2013).
  • 22. S. Xu-chao, D. Yi-feng, Support vector machine applied to prediction strength of cement. In: 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 1585-1588, IEEE, 2011.
  • 23. P. Yuvaraj, A. Ramachandra Murthy, N. R. Iyer, S. K. Sekar, P. Samui, Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Engineering Fracture Mechanics 98, 29-43 (2013).
  • 24. H. Kalhori, R. Bagherpour, Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Construction and Building Materials 148, 249-260 (2017).
  • 25. S. Chithra, S. R. R. S. Kumar, K. Chinnaraju, F. Alfin Ashmita, A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Construction and Building Materials, 114, 528-535 (2016).
  • 26. R. Beale, T. Jackson, Neural Computing - An Introduction. CRC Press, 1990.
  • 27. L. V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall international editions, 1994.
  • 28. M. Sarıdemir, Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic, Advances in Engineering Software, 40, 920-927 (2009).
  • 29. V. N. Vapnik, Statistical learning theory. John Wiley and Sons, New York, 1998.
  • 30. C. Cortes, V. Vapnik, Support-vector networks. Mach Learn, 20, 273-297 (1995).
  • 31. C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2, 27 (2011).
  • 32. E. Ghasemi, H. Kalhori, R. Bagherpour, A new hybrid ANFIS–PSO model for prediction of peak particle velocity due to bench blasting., Engineering with Computers, 32, 607-614 (2016).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edde4980-3d67-4c2c-9194-bcf863609ca3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.