Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work consisted in analyzing the influence of an electronic positioning mechanism of an Au metal plate in the XY axes; to optimize the production of Au metal nanoparticles by laser ablation in sterile water samples as well as to obtain morphology and size required for environmental nanosensors. The positioning mechanism is constituted by two M35SP stepper motors of 5 V DC with a rotation angle of 7.5° per step; the one that generates the displacement for each axis of XY coordinates, controlled by an algorithm implemented in Arduino Nano ATmega328, being the driver of the stepper motors the H-bridge of the L298N module, with which it was possible to set the speed to 2 mm/s, which enabled to make the wear of the metal plate uniform in the process of generation of gold nanoparticles (AuNPs). With the pulsed laser generator with ablation frequency of 10 Hz and wavelengths of 532 nm and 1064 nm, the Au metal plate was irradiated for 10 min, 20 min and 30 min. AuNPs were generated in colloidal state both for the process with fixed position of the metal plate and for the process using the electronic mechanism of XY positioning; they were characterized by UV-Vis spectroscopy with range from 300 nm to 850 nm. It was found that the production of AuNPs with the Au plates mobilized by the mechanism under study, generates colloids of spherical AuNPs of smaller diameter, close to 10 nm, with an average reduction of 19% in relation to that generated with the fixed position plate; likewise, the concentration of the AuNPs increased by 20.40%; therefore, the influence of the XY positioning electronic mechanism was positive in the production of AuNPs with morphology and sizes suitable for use in environmental nanosensors.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
52--61
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
- Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
autor
- Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909-4089, Huancayo 12006, Junín, Perú
autor
- 3 Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909-4089, Huancayo 12006, Junín, Perú
Bibliografia
- 1. Anwar, A., Minhaz, A., Khan, N.A., Kalantari, K., Afifi, A.B.M., Shah, M.R. 2018. Synthesis of gold nanoparticles stabilized by a pyrazinium thioacetate ligand: A new colorimetric nanosensor for detection of heavy metal Pd(II). Sensors and Actuators B: Chemical, 257, 875–881. https://doi.org/https://doi.org/10.1016/j.snb.2017.11.040
- 2. Arduino. 2022. Software Arduino IDE. https://www.arduino.cc/en/software
- 3. Avantes. 2018. Espectrómetro UV-Vis-NIR - AvaSpec-ULS2048x64-EVO. https://www.medicalexpo.com/prod/avantes/product-104219-950813.html
- 4. Carbajal-Morán, H., Rivera-Esteban, J.M., Aldama-Reyna, C.W., Mejía-Uriarte, E.V. 2022. Functionalization of Gold Nanoparticles for the Detection of Heavy Metals in Contaminated Water Samples in the Province of Tayacaja. Journal of Ecological Engineering, 23(9), 88–99. https://doi.org/10.12911/22998993/151745
- 5. Dheyab, M.A., Aziz, A.A., Moradi Khaniabadi, P., Jameel, M.S., Oladzadabbasabadi, N., Mohammed, S.A., Abdullah, R.S., Mehrdel, B. 2022. Monodisperse gold nanoparticles: A review on synthesis and their application in modern medicine. International Journal of Molecular Sciences, 23(13), 7400.
- 6. Gentile, L., Mateos, H., Mallardi, A., Dell’Aglio, M., De Giacomo, A., Cioffi, N., Palazzo, G. 2021. Gold nanoparticles obtained by ns-pulsed laser ablation in liquids (ns-PLAL) are arranged in the form of fractal clusters. Journal of Nanoparticle Research, 23(2), 35.
- 7. Guver, A., Fifita, N., Milas, P., Straker, M., Guy, M., Green, K., Yildirim, T., Unlu, I., Yigit, M.V., Ozturk, B. 2019. A low-cost and high-precision scanning electrochemical microscope built with open source tools. HardwareX, 6, e00082. https://doi.org/https://doi.org/10.1016/j.ohx.2019.e00082
- 8. Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G. 2007. Determination of size and concentration of gold nanoparticles from UV− Vis spectra. Analytical Chemistry, 79(11), 4215–4221.
- 9. Hao, X., Xia, G., Zhang, S., Zhou, Z., Du, M., Ding, X. 2022. Study of metal 3D printing stepper motor control based on S-trapezoid algorithm. 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 1107–1111.
- 10. Herbani, Y., Irmaniar, Nasution, R.S., Mujtahid, F., Masse, S. 2018. Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production. Journal of Physics: Conference Series, 985(1), 12005. https://doi.org/10.1088/1742-6596/985/1/012005
- 11. Khani, H., Abbasi, S., Tavakkoli Yaraki, M., Tan, Y.N. 2022. A naked-eye colorimetric assay for detection of Hg2+ ions in real water samples based on gold nanoparticles-catalyzed clock reaction. Journal of Molecular Liquids, 345, 118243. https://doi.org/https://doi.org/10.1016/j.molliq.2021.118243
- 12. Kurniawan, A. 2021. Iot projects with arduino nano 33 ble sense. Berkeley: Apress, 129.
- 13. Liao, H.-S., Werner, C., Slipets, R., Emil Larsen, P., Hwang, I.-S., Chang, T.-J., Ulrich Danzebrink, H., Huang, K.-Y., Hwu, E.-T. 2022. Low-cost, opensource XYZ nanopositioner for high-precision analytical applications. HardwareX, 11, e00317. https://doi.org/https://doi.org/10.1016/j.ohx.2022.e00317
- 14. Manjubaashini, N., Daniel Thangadurai, T. 2023. Unaided-eye detection of diverse metal ions by AuNPs-based nanocomposites: A review. Microchemical Journal, 190, 108628. https://doi.org/https://doi.org/10.1016/j.microc.2023.108628
- 15. Mucciaroni, L.R., Vivas, M.G. 2021. Efficient Yet Accessible Arduino-based Control System for Laser Microfabrication of Photonic Platforms. Lasers in Manufacturing and Materials Processing, 8(4), 395–408. https://doi.org/10.1007/s40516-021-00153-3
- 16. Naser, H., Shanshool, H.M., Imhan, K.I. 2021. Parameters Affecting the Size of Gold Nanoparticles Prepared by Pulsed Laser Ablation in Liquid. Brazilian Journal of Physics, 51(3), 878–898. https://doi.org/10.1007/s13538-021-00875-x
- 17. Paidari, S., Ibrahim, S.A. 2021. Potential application of gold nanoparticles in food packaging: a mini review. Gold Bulletin, 54, 31–36.
- 18. Qayyum, H., Ali, R., Rehman, Z.U., Ullah, S., Shafique, B., Dogar, A.H., Shah, A., Qayyum, A. 2019. Synthesis of silver and gold nanoparticles by pulsed laser ablation for nanoparticle enhanced laser-induced breakdown spectroscopy. Journal of Laser Applications, 31(2), 22014.
- 19. Quantel. 2019. Q-smart 450 Pulsed Nd:YAG Laser, 213 to 1064nm, 8 to 450mJ, Product - Photonic Solutions, UK. https://www.photonicsolutions.co.uk/product-detail.php?prod=6345
- 20. Romero, A.L.S., Barbano, E.C., Misoguti, L. 2019. Computerized system for sample displacement with stepper motor using the L298: application in the Z-scan technique. Revista Brasileira de Ensino de Física, 41. https://doi.org/10.1590/1806-9126-RBEF-2019-0018
- 21. Shi, H., Kim, Y., She, Y. 2015. Design of a parallel kinematic MEMS XY nanopositioner. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 1973–1978. https://doi.org/10.1109/ROBIO.2015.7419062
- 22. Shih, C.-Y., Shugaev, M.V, Wu, C., Zhigilei, L.V. 2020. The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations. Physical Chemistry Chemical Physics, 22(13), 7077–7099.
- 23. Shin, M., Yang, S., Kwak, H.W., Lee, K.H. 2022. Synthesis of gold nanoparticles using silk sericin as a green reducing and capping agent. European Polymer Journal, 164, 110960. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2021.110960
- 24. Talan, A., Mishra, A., Eremin, S.A., Narang, J., Kumar, A., Gandhi, S. 2018. Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosensors and Bioelectronics, 105, 14–21. https://doi.org/https://doi.org/10.1016/j.bios.2018.01.013
- 25. Virgala, I., Kelemen, M., Gmiterko, A., Lipták, T. 2015. Control of stepper motor by microcontroller. Journal of Automation and Control, 3(3), 131–134.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edd258e0-aecd-4edb-a175-2b74d0909cec