Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Usually porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability for exhaust gas filter, hydrogen reformer catalyst support. The Ni alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. In this study, the Ni-based porous metals have been developed with Hastelloy powder by gas atomization and water atomization in order to find the effects of powder shape on porous metal. Each Hastelloy powder is pressed on disk shape of 2 mm thickness with 12 tons using uniaxial press machine. The specimens are sintered at various temperatures in high vacuum condition. The pore properties were evaluated using Porometer and microstructures were observed with SEM.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
917--920
Opis fizyczny
Bibliogr. 10 poz., fot., rys., tab.
Twórcy
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
- University of Ulsan, Department of Materials Science and Engineering, Ulsan, Korea
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
- University of Ulsan, Department of Materials Science and Engineering, Ulsan, Korea
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
autor
- R&D Center, Asflow Co. Ltd, Suwon, Korea
autor
- University of Ulsan, Department of Materials Science and Engineering, Ulsan, Korea
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
Bibliografia
- [1] Y. O. Park, S. D. Kim, J. M. Seo, S. J. Park, H. K. Choi, H. S. Park, J. H. Lim, J. E. Son, Korean J. Chem. Eng. 39, 446 (2001).
- [2] S. H. Choi, J. Y. Yun, H. M. Lee, Y. M. Kong, B. K. Kim, K. A. Lee, Korean powder Metallurgy Institute 18, 122 (2011).
- [3] T. H. Kim, G. T. Hwang, Ceramist 19, 12 (2016).
- [4] C. Moelle, C. Schmidt, K. Muller, H. Fecht, Synthesis and Processing of Nanocrystalline Powder 121 (1996).
- [5] C. Suryanarayana, G. E. Korth, F. H. Froes, J. Hebeisen, Synthesis and Processing of Nanocrystalline Powder 133 (1996).
- [6] J. D Shim, J. Y. Byun, Korean Journal of Materials Research. 25, 155 (2015).
- [7] M. Randall, Powder metallurgy & Particulate Materials processing, German (2005).
- [8] H. M. Tawancy, N. Sridhar, Oxid. Met. 37, 143 (1991).
- [9] J. M. Contreras, A. Jiménez-Morales, J. M. Torralba, Powder Metall. 51,103-106 (2008).
- [10] B. N. Nobrega, W. Ristow Jr., R. Machado, Powder Metall. 51, 107-110 (2008).
Uwagi
EN
1. This study was supported financially by Fundamental Research Program (PNK6040) of the Korean Institute of Materials Science (KIMS) and by a grant from the Fundamental R&D Program for Strategic Core Technology of Materials funded by the Ministry of Trade, Industry & Energy, Republic of Korea.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-edcbc867-17de-499e-955a-2ec5bd858f02