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1. Introduction

Nowadays, electric power systems around the world are becom-
ing more and more complex, and their operation is often close to their 
limits. Uninterrupted supply of electricity is an important factor in-
fluencing a series of events and relationships within the society itself. 
Disruption of the power systems caused by faults results in significant 
financial damage due to unsupplied electricity (possible consumers’ 
lawsuits for damage caused by interruption of electricity supply). One 
of the ways of dealing with the mentioned problems is automating and 
systematically handling of the information which help power system 
operators make the right decisions. The nature of this type of problem 
is diagnostic, and the general term is a failure diagnosis. According to 
Sekine [26], ˝fault diagnosis of power systems involves identifying 
the location and cause of faults occurring in the power system due 
to lightning strokes, and so on˝. With occurrence of a few hundred 
alarms in a short period of time, the situation for a power system oper-

ator is complicated and it is very difficult to find a section of a failure 
and a cause of a failure. This prevents the operator from reacting in a 
proper way and to establish initial topology of the network thus mak-
ing operator’s assumptions erroneous. Due to such situations, various 
methods for analysing the alarms are used. In order to assist opera-
tors in making decisions and diagnosis, automated fault-diagnosis 
and decision-making systems are being developed. Off-line systems 
for the diagnosis of faults are primarily developed. On-line systems 
for fault diagnosis, often called alarm processing, is developed from 
the off-line systems [29]. Interesting examples of fault diagnosis in 
complex systems can be found in the literature [6, 8, 10]. Modern on-
line diagnostic systems work in the form of advanced DMS (Distribu-
tion System Management) applications. The current situation in the 
Croatian distribution system is such that most diagnostics are carried 
out by the operator (human) on the basis of received alarms that are 
generated in the case of the fault. In many parts of the distribution 
network, equipment is not connected to the local dispatching centre 
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Identyfikacja i diagnoza błędów w elektroenergetycznej sieci 
rozdzielczej z wykorzystaniem rozmytego systemu eksperckiego

In this paper, a fuzzy expert off-line system has been developed for fault diagnosis in the distribution network based on the struc-
tural and functional operation of the relay and circuit breakers. Functional operations (correct operation, false operation and 
failure to operate) of the relays and circuit breakers are described by fuzzy logic. Input data for the proposed fuzzy expert fault di-
agnosis system (FDS) are status and time stamps of the alarms, associated with relays and circuit breakers. The diagnostic system 
from a huge number of alarms sets, logically organizes and quantifies the diagnosis. FDS can diagnose correct operation, false 
operation and failure to operate of the relays and circuit breakers. Also, it can identify and quantify fault location based on the 
Hamacher’s operator of a fuzzy union. The additional contribution of this paper is in modeling unknown information using linear 
fuzzy membership function. Statuses of certain components may be unknown due to telemetry failures or are simply unavailable to 
the operator and proposed FDS can make diagnosis in such a situation. Developed fuzzy expert FDS is tested on the two examples 
of faults in real life distribution network.
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W prezentowanym artykule opracowano rozmyty system ekspercki typu off-line do diagnozowania błędów w elektroenergetycznej 
sieci rozdzielczej. System bazuje na strukturze i działaniu przekaźnika i wyłączników automatycznych. Działanie (prawidłowe 
działanie, błędne działanie i brak działania) przekaźników i wyłączników opisano za pomocą logiki rozmytej. Dane wejściowe 
do proponowanego rozmytego eksperckiego systemu diagnostyki błędów (FDS) stanowią stany i sygnatury czasowe alarmów, 
związane z przekaźnikami i wyłącznikami. System diagnostyczny logicznie porządkuje i określa ilościowo diagnozę na podsta-
wie ogromnej liczby zestawów alarmów. FDS pozwala zdiagnozować prawidłowe działanie, błędne działanie oraz awarię (brak 
działania) przekaźników i wyłączników. Ponadto umożliwia identyfikację i lokalizację błędów w oparciu o sumę Hamachera. W 
artykule dodatkowo omówiono metodę modelowania informacji nieznanych przy użyciu liniowej funkcji przynależności dla zbio-
rów rozmytych. Stany niektórych elementów mogą być nieznane z powodu awarii telemetrii lub mogą być po prostu niedostępne 
dla operatora. Proponowany FDS umożliwia postawienie diagnozy w takich sytuacjach. Opracowany rozmyty ekspercki FDS 
testowano na dwóch przykładach błędów powstałych w funkcjonującej sieci rozdzielczej.

Słowa kluczowe:	 diagnoza błędów, przetwarzanie alarmów, logika rozmyta, system ekspercki, sieć rozdzielcza.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 20, No. 4, 2018622

Science and Technology

and operators are often faced with a lack of information. The first step 
towards the establishment of a modern on-line diagnostic system is a 
communication connection of all relevant equipment with a control 
center. This is the way towards the development of the so-called smart 
grid where it will rely less and less on the network operator response 
and failures will be addressed through a network self-recovery.

Artificial Intelligence (AI) has proven to be successful in solving 
diagnosis problems when compared to traditional numerical methods 
[32]. Expert systems (ES) are one of the AI methods which are com-
monly used to solve these problems. They use and import methods 
developed in the area of qualitative reasoning [13]. ES possesses a 
lack of generality in an application for failure diagnosis and resto-
ration, which is not considered as a negative characteristic in such 
an extensive and combinatorial problem, since the system requires: 
understanding, flexibility and high performance [18]. ES emulates the 
solution, which means that the solution can be closer to the reality 
than the solution obtained by simulation [11]. However, some prob-
lems remain, such as shortcomings or complete lack of information, 
quantifying fault identification and black-and-white thinking. For 
such a type of problem, fuzzy rule-based expert systems are suitable.

In [12] fuzzy set is developed to deal with the uncertainty involved 
in the process of locating faults in distribution networks. The fuzzy set 
theory has been introduced as a mechanism to incorporate uncertain-
ties and qualitative judgments in the status of relays and circuit break-
ers as well as correctness or incorrectness of their operations in the re-
search papers [4, 20]. An integrated fuzzy expert system is presented 
in [15] to diagnose faults in a transmission network and substations. 
Besides the application in power system, fuzzy expert systems are 
widely used for diagnosing problems in many fields [1]. Methods by 
which researchers are trying to overcome the shortcomings of fuzzy 
expert systems are: artificial neural networks (ANNs) combined with 
the fuzzy logic systems [3, 24], genetic algorithms (GA) [2, 14], fuzzy 
Petri net [34], mixed integer programming model [21], multi-agent 
systems [25] etc. A detailed review of articles on intelligent systems 
used for fault diagnosis in transmission networks can be found in the 
literature [7]. On the other hand, trends in the fault diagnosis in dis-
tribution systems include systems with distributed generation (photo-
voltaics, wind generation etc.) [17, 27, 28, 30, 33, 35, 36].

Based on the literature review, it can be concluded that most com-
monly used methods for fault diagnosis in distribution networks in-
clude expert systems, neural networks (NN), fuzzy logic (FL) and ge-
netic algorithms (GA). The strengths of the ES are in the representation 
of expert knowledge and the interpretation of causative-consequence 
relationship. The shortcomings of the ES are in the lack of generality, 
inability to learn and adapt. On the other hand, NN and GA are supe-
rior in the case of learning and adapting and dealing with uncertainty 
and missed data. The disadvantages of NN and GA lie in poor expert 
knowledge representation and interpretation. The FL is very good in 
dealing with uncertainty and missed data while it is weaker regarding 
learning and adapting. Research trends show that solutions related to 
fault diagnosis in the distribution network are found in the hybridiza-
tion of different methods in order to combine the strengths of each 
method and overcome weaknesses. A combination of ES and FL has 
been shown to be effective and it is chosen in this paper.

It is noticed that fuzzy expert systems developed in [4, 12, 15, 
20] for fault diagnosis use information only in the form of relays and 
circuit breakers (CBs) status and they do not use the alarm time stamp. 
Also, the expert base of knowledge are not shown by the functional 
activity of the relay and CB. In this paper, a model for functional 
activity of the relay and the circuit breaker, described by fuzzy logic, 
is presented and incorporated in off-line fault diagnosis system (FDS) 
for application to electric distribution system. Fuzzy expert FDS uses 
relay and CB statuses and their timestamps as input data. The diagnos-
tic system sets, logically organizes and quantifies the diagnosis from a 
huge number of alarms. Developed fuzzy expert FDS successfully di-

agnoses the correct operation, false operation and failure to operate of 
the relay and CB. It also has the ability to locate and quantify the fault 
on the basis of the operator of the fuzzy union, which is expressed as 
Hamacher’s union operator [37]. Locating and quantifying the fault 
refers to finding a section of distribution network which is faulted and 
quantifying this diagnose with a certain probability. In addition, it also 
successfully deals with telemetry breakdowns by using a new way 
of modeling non-existent information using a linear time-dependent 
fuzzy membership function. Since faults in telemetry, noise or lack 
of connection can make certain statuses of relays or CBs unknown, 
modeling of non-existent information enables successful diagnosis 
even in these cases. Developed fuzzy expert FDS is tested on the two 
examples of faults in real life distribution network.  

The structure of this paper is as follows: first, a detailed math-
ematical description of the developed fuzzy expert FDS is done in 
Section 2. Modeling of the real-life distribution network is briefly 
described in Section 3. In Section 4, examples of the diagnoses for 
the real-life events are presented. Short conclusion and comments are 
made at the end of the paper. 

2. Mathematical description of the developed fuzzy 
expert FDS

2.1.	 General description of the model

The flow chart diagram of a developed fuzzy expert FDS is shown 
in Fig. 1. The diagram starts with the input data relating to the alarms 
with their statuses and time stamps. Alarms used for fault diagnosis 
are related to relays and CBs and they consist of statuses and time 
stamps. Data are in linguistic and numerical form. The linguistic form 
describes component status (for example relay is activated or relay 
starts) - Rstart, relay trip - Rtrip, circuit breaker open – CBopen and cir-
cuit breaker closed – CBclosed). Numerical form is time-stamp. 

The input data are then transferred to the expert knowledge da-
tabase which is composed of the three parts: the network model, the 
fuzzy expert database for relays and the fuzzy expert database for cir-
cuit breakers. The network model is composed of individual sections. 
The expert databases for relays and CBs are modeled using fuzzy rules 
outlined by functional knowledge and causative-consequent mode of 
component functioning. Since it is not possible to make a diagnosis 
when only one component status is available (this can be often in 
practice), a nonexistent status is modeled. The part of the knowledge 
database is modeled with fuzzy rules that use the model of nonexist-
ent information to model the functionality of components with one 
known and one unknown information. Thus developed fuzzy expert 
FDS can diagnose relay and CB operation even when only one status 
is known because it uses the model of nonexistent information. 

After the expert knowledge databases (Fig. 1), the diagnosis of the 
relay and CB operation is made using fuzzy membership functions in 
order to diagnose the correct operation, false operation and failure to 
operate of the appropriate component. A detailed description of the 
used fuzzy rules can be found in the Chapters 2.2 and 2.3. Once, when 
the diagnosis of relay and CB operations are made, using Hamacher’s 
fuzzy union operator, the last diagnosis is made i.e. the fault is identi-
fied and quantified.

The above-mentioned system can diagnose the correct operation, 
false operation and failure to operate of the relay and CB and it makes 
a quantitative diagnosis by the numerical amount of membership 
function in order to rank a different diagnosis thus helping the opera-
tor make the right decision.
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2.2. Fuzzy model for the relay operation diagnosis

The functional operation of the relay is described by means of cor-
rect operation, false operation and failure to operate. Expressions (1) 
and (2) represent a functional description of these operations based on 
the cause and effect of the fault and related relay and are referred to as 
logical equations of operations [16, 22]:

	 operate start tripR R R= ∩ 	 (1)

	 _ _failure to operateR  start o tripR N R= ∩ 	 (2)

where: Roperate – correct operation of the relay, Rstart – relay status 
when it is activated i.e. active relay status, Rtrip – relay status when 
it trips, Rfailure_to_operate – failure to operate of the relay and N0Rtrip – 
non-existent trip status of the relay (the relay has not sent the signal 
for switch off to CB). 

Relation (1) represents the correct operation of the relay which 
means that after the relay is activated Rstart (at the moment tstart when 
fault occurs) it waits for a certain time and then at the moment that 
is defined by the so-called setup tripping time tsup it sends the trip-
ping signal Rtrip to associated CB to open. In the practice, actual trip 
time of the relay ttrip can be slightly different from the set up time tsup 
(most often ttrip is in the time interval ±10% of tsup). Relation (2) is the 
failure to operate of the relay which means that relay is activated but 
it has not sent the signal to the circuit breaker. In this case, status Rtrip 
is not available, thus the new non-existent trip status N0Rtrip is mod-
eled. The second functional operation of the relay i.e. false operation 
means that relay tripped but outside of the allowed time interval. In 
practice most commonly allowed time interval is 0.9tsup – 1.1tsup. This 
functional operation can’t be modeled by previously introduced logi-
cal equations but it is modeled using fuzzy logic.

A new way of modeling the functional operation of the relay by 
fuzzy logic in the time domain is described by the following expres-
sions:

	
µ µ µR operate Rstart Rtript t t_ ( ) ( ) ( )= ∩ , ( )sup,0.9 1.1 supt t t∈     (3)

µ µ µR false operation Rstart Rtript t t_ _ ( ) ( ) ( )= ∩ , ) (s , sup sup,2tart supt t t t t ∈ ∪    
(4)

µ µ µR failure to operate Rstart NoRtript t t_ _ _ ( ) ( ) ( )= ∩ , [ )1,startt t t∈    (5)

where: μR_operate(t) – fuzzy membership function that represents the 
correct operation of the relay, μRstart(t) – fuzzy membership func-
tion of the active relay status, μRtrip(t) – fuzzy membership function 
of the trip relay status, tsup – setup tripping time of the relay, μR_false 

operation(t) – fuzzy membership function that represents the false op-

eration of the relay, tstart – the time when relay is activated (relay 
activation time), μR_failure to operate(t) – fuzzy membership func-
tion that represents the failure to operate of the relay, μNoRtrip(t) 
– fuzzy membership function of the non-existent trip status of 
the relay and t1 – arbitrary chosen time which needs to be larger 
than double setup tripping time tsup.

	In order to obtain intersection of fuzzy sets, standard fuzzy 
intersection defined by the relation (6) is chosen in this paper:

	 µ µ µA B A B∩ = min( , ) 	 (6) 

where: μA – membership function of the fuzzy set A and μB – 
membership function of the fuzzy set B.

Fuzzy membership functions of the active relay status and 
trip relay status are modeled as trapezoidal shape membership 

functions. For the fault diagnosis in power system using fuzzy-expert 
systems, researchers mostly use triangular fuzzy membership func-
tion in order to model non-existent state (or alarm signal) [20]. In 
some other application, the constant membership function is also used 
[23]. For FDS developed in this paper, a new way of modeling non-
existent information consists of using linear membership function (as 
time passes the value of the membership function to the non-existent 
state linearly increases) for relay non-existent trip status. The back-
ground of this model consists of a combination of deductive (logical) 
insertion, regression insertion and longitudinal insertion expressed in 
fuzzy logic and is based on the theory of missing data explained in [5, 
31]. The fuzzy membership function of the non-existent trip status of 
the relay is defined:

	 µNoRtrip t t
t

a( ) = +
1

	 (7)

where: a – is intersection of linear membership function and y-axes, 1/
t1 is the slope of the liner membership function.

Unknown time stamp (unknown time tn) of this non-existent relay 
signal can be found from:
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Correct operation of the relay is defined by the member-
ship function μR_operate(t) (relation (3)) which is equal to the standard 
fuzzy intersection of the relay active status membership function 
μRstart(t) and relay trip status membership function μRtrip(t) in the 
time interval of 10%±  of the relay setup tripping time. Example of 
the fuzzy memebership function that describes correct operation of 
overcurrent protection of the relay is shown in Fig. 2. False operation 
of the relay is defined by the membership function μR_false _operation(t) 
(relation (4)) which is equal to the standard fuzzy intersection of the 
relay active status membership function μRstart(t) and relay trip status 
membership function μRtrip(t) in the time interval that starts with the 
relay activation time tstart and ends with double setup tripping time 
2tsup. Because the value of membership function μRtrip(t) in the mo-
ment t=tsup is one, setup tripping time tsupp is excluded from this time 
interval. Failure to operate of the relay is defined by the membership 
function μR_failure_to_ operate(t) (relation (5)) which is equal to the stan-

Fig. 1. Block diagram of the developed fuzzy expert FDS
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dard fuzzy intersection of the relay active status membership func-
tion μRstart(t) and relay non-existent trip status membership function 
μNoRtrip(t) in the time interval that starts with the relay activation time 
tstart and ends with time t1 which is arbitrary chosen time (it needs to 
be larger than double time tsup).

2.3.	 Fuzzy model for the circuit breaker operation diagnosis

The relays and circuit breakers in the power 
system are causal-consequently connected due 
to their functional operation. During the fault, 
the relay sends signal Rtrip to the circuit breaker 
to switch off (to open) and circuit breaker opens 
the faulted section (line, transformer etc.). The 
functional operation of the CB is described by 
means of correct operation, false operation and 
failure to operate. These actions are described 
by the logical equations (9-11) derived from the 
[16, 22]. All relations are combinations of relay status and CB status:

	 operate trip openCB R CB= ∩ 	 (9) 

	 _false operation O trip openCB N R CB= ∩ 	 (10)

	 _ _failure to operate trip closeCB R CB= ∩ 	 (11) 

where: CBoperate – correct operation of the circuit breaker, CBopen – 
CB status when it opens or switch off (open status), CBfalse_operation 
– CB false operation, CBfailure_to_operate – failure to operate of the CB 
and CBclose – CB status when it close (closed status).

Relation (9) represents the correct operation of CB which means 
that CB opens when it receives the corresponding signal from the 
connected relay. Expression (10) represents the false operation of CB 
which means that CB opens without the signal from the connected 
relay. Expression (11) represents the failure to operate of CB which 
means that CB receives the signal from the connected relay but it 
doesn’t open.

A new way of modeling the functional operation of the relay by 
fuzzy logic in the time domain is described by the following expres-
sions:

µ µ µCB operate Rtrip CBopent t t_ ( ) ( ) ( )= ∩ , ( )sup0.9 ,1.1CBopen supt t t t∈ +

(12)

µ µ µCB false operation NoRtrip CBopent t t_ _ ( ) ( ) ( )= ∩ , )sup 10.9 ,CBopent t t t∈ +  

(13)

µ µ µCB failure to operate Rtrip CBclosedt t t_ _ _ ( ) ( ) ( )= ∩ , ( )sup0.9 ,1.1 supt t t∈

(14)

where: μCB_operate(t) – fuzzy membership func-
tion that represents the correct operation of the 
CB, μCBopen(t) – fuzzy membership function of 
the CB open status, tCBopen – time needed CB 
to open, μCB_alse_operation(t) – fuzzy membership 
function that represents the false operation of 
CB, μCB_failure to operate(t) – fuzzy membership 
function that represents the failure to operate of 
the CB, μCBclose (t) – fuzzy membership func-
tion of the CB closed status.

The fuzzy membership function of the open CB status is mod-
eled as gamma membership function. Correct operation of the CB 
is defined by the membership function μCB_operate(t) (relation (12)) 
which is equal to the standard fuzzy intersection of the relay trip status 
membership function μRtrip(t) and CB open status membership func-

tion μCBopen(t) in the time interval that starts with 0.9tsup+tCBopen and 
ends with 1.1tsup. False operation of the CB is defined by the mem-
bership function μCB_false_operation(t) (relation (13)) which is equal to 
the standard fuzzy intersection of the relay non-existent trip status 
membership function μNoRtrip(t) and membership function of the CB 
open status μCBopen(t) in the time interval that starts with 0.9tsup+ tCBo-

pen and ends with arbitrary chosen time t1 (it needs to be larger than 
double tripping time tsup). Failure to operate of the CB is defined by 
the membership function μCB_failure_to_operate(t) (relation (14)) which is 
equal to the standard fuzzy intersection of the relay trip status mem-
bership function μRtrip(t) and membership function of the CB closed 
status μCBclosed(t) in the time interval that starts with 0.9tsup and ends 
with 1.1tsup. Example of the fuzzy membership function that describes 
the false operation of the CB is shown in Fig. 3. Fig. 3 shows that 
fuzzy membership function of the non-existent trip status of the relay 
is linear.

2.4.	 Fuzzy model for the fault identification and quantifica-
tion

Fault identification is defined by the action of the relay and circuit 
breaker since their combination will protect a particular section or 
component in the electric distribution network. Knowing the informa-
tion about the functional operation of the relay and/or circuit breaker, 
the faulted section of the network can be identified. The identification 
of the fault with proposed FDS is possible even when only one infor-
mation is known. Nevertheless, if the information about both the relay 
and the CB are known, the probability that the failure occurred on a 
particular section that is protected with these specific relay and CB is 
greater than if only information for one component (CB or relay) is 
available. Fault identification and quantification using fuzzy logic are 
defined by the union of fuzzy sets of all CBs and all relays that are 
activated due to fault based on the expression [4, 12]:

	 µ µ µFDI R operate CB operatet t t( ) ( ) ( )_ _= ∪ 	 (15)

where: μFDI(t) – fuzzy membership function that represents fault iden-
tification and quantification.

Fig. 2. Example of correct operation of the relay overcurrent protection relay

Fig. 3. Example of false operation of the CB
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Fault identification presented with expression (15) is defined 
by the union of two fuzzy sets. Many alternative fuzzy union opera-
tors (t-conorms) are used for fault identification in electric networks. 
Standard fuzzy union operator (or maximum operator) is used in [4, 
20]. Yager, Hamacher, Dubois and Dombi union operators are used 
in [19]. For FDS developed in this paper, Hamacher’s union operator 
is chosen:

 
U

r
R operate CB operate

R operate CB operate R( , )
( )

_ _
_ _ _

µ µ
µ µ µ

=
+ + − ⋅2 ooperate CB operate

R operate CB operater r

⋅ 
+ −( ) ⋅ ⋅ 

µ

µ µ
_

_ _1

(16)

where: 
U R operate CB operate( , )_ _µ µ

 – Hamacher’s union of two fuzzy 
sets (first set is consisted of all relays that are activated due to fault 
and second set is consisted of all CBs that are activated due to a fault), 
r – is a positive number (r > 0) which is in this paper set to a value of 
1.01.

3. Application of fuzzy expert FDS to the real dis-
tribution network

3.1.	 Model of the distribution network

The distribution network that is used as a model for devel-
oped fuzzy expert FDS is shown in Fig. 4 (part of 35 kV and 10 
kV real distribution network in Croatia). The network consists 
of two 35 kV bus (B2 and B3) connected by a 35 kV transmis-
sion line (L2), two transformers 35/10 kV (T3 and T4), 10 kV 
bus (B4) and four 10 kV transmission lines (L3, L4, L5 and L6). 
The transmission line L2 (35 kV) is protected by the overcur-
rent (I>), short circuit (I>>) and earth fault protection (U0I0) in-
corporated in relay R1 that controls circuit breaker CB1. Circuit 
breaker CB2 is manual and it is not controlled by the any of the 
relays. The 35/10 kV transformers (T3 and T4) are protected by 
the overcurrent (I>) and differential (3DI) protection incorpo-
rated in relays R2 and R3 that control pairs of circuit breakers 
CB3-CB5 and CB4-CB6 respectively. 10 kV transmission lines 
(L3 – L6) are protected by the overcurrent (I>), short circuit 
(I>>) and earth fault protection (U0I0) incorporated in relays 
R4, R5, R6, and R7. These relays are connected to the appropri-
ated circuit breakers (CB7, CB8, CB9, and CB10). Transform-
ers in the 110/35 kV substation (T1 and T2) are the responsi-
bility of the transmission system operator so their relays and 
circuit breakers are not considered in this paper. The time set-
tings for the protection are shown in Fig. 4. The number of rules 
that are introduced in FDS for presented distribution network 
is 78. In this paper, only part of distribution network presented 
in Fig. 4 is modeled because this part makes one operational 
and functional section which is connected to one transmission 
transformer station (110/35 kV). This functional section is radi-
ally supplied from the transmission transformer station and is 
independent of the rest of the distribution network. The whole 
distribution network consists of many similar sections that are 
standard. In the practice, fault diagnosis is done for each section 
individually because the fault in one section doesn’t affect other 
sections. Thus proposed FDS is tested for only one section. For 
the modeling fuzzy expert fault diagnosis system Prolog soft-
ware tool is used.

3.2.	 Example of sagittal diagram for the test network

Sagittal diagrams were introduced for the first time in a power 
system fault diagnosis in 1997 [9]. They describe the causative 

consequence relationship of the alarm with the fault location. Most 
commonly, this causal connection is called the alarm path. In the 
background of the alarm path, there is a functional connection (cause-
and-effect connection) of the fault and the relay and also of the relay 
and the CB. Sagittal diagrams represent a unified view of the alarm 
(membership function to a particular state) and fault identification.

Figure 5 shows the example of the sagittal diagram for the 10 kV 
transmission line L6 (see Fig. 4). The direction from the cause to the 
consequence goes from the left side to the right, marked by the arrow. 
The diagram consists of six functional operations; three of them are 
related to relays, and the remaining three are related to the CBs (cor-
rect operation, false operation and failure to operate).

The correct operation of the relay, false operation and failure to 
operate is shown for all three protections (overcurrent protection, 
short circuit protection and earth fault protection) that are incorpo-
rated in relay R7. Two alarms (states) are required for the diagnosis 
of functional operation, and these alarms are differently colored in 
Fig.  5. Light gray rectangles indicate the presence of these alarms 
on the alarm log, and diagnosis of the functional operation, in that 

case, is simple. The situation is complicated when one of the neces-
sary alarm is missing, which can happen in the actual distribution 
networks. In order to make diagnosis in such a situation, non-existent 
information is modeled as it is explained in section 2.2. Dark gray 
rectangles represent non-existent alarms (non-existent information; 

Fig. 4. Single line diagram of the analyzed distribution network
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membership function of non-existent state). 
White rectangles indicate alarms (state, mem-
bership function of the state) that are not used 
in diagnosis, and appear at the beginning or at 
the end of the alarm path.

From top to bottom in Fig. 5 the correct 
operation of the relay R7 is shown first. The 
diagram is further divided into three groups 
depending on the type of the associated protec-
tion: overcurrent (OC), short circuit (SC) and 
earth fault (EF). After the correct operation, 
false operation as well as failure to operate of 
the relay R7 are shown in Fig. 5. Relay R7 is 
connected to CB10 thus functional operations 
of CB10 are also shown.

4. Examples of the diagnosis for the 
real life events 

Two examples of fault diagnosis for the 
real distribution network (Fig. 4) are shown in 
order to verify the developed FDS. The exam-
ples are based on the real-life events and they 
illustrate the possibilities and effectiveness of 

the proposed FDS. Fault activates the relay protection that iso-
lates the faulted section by sending tripping to associated circuit 
breakers. Also, alarms are send to the dispatch center. There the 
operator can see the alarms through the SCADA system (Super-
visory Control and Data Acquisition) which alongside having 
a possibility of remote management, measurement and control, 
also has a chronological events recorder (CER). The alarms 
that reach the dispatch center are visible in the CER and are 
retained there [38]. The operator needs to make decision how 
to reconfigurate the network and minimize the consequence of 
the faults (the intention is that the number of end consumers 
without the electricity due to fault is minimum while the net-
work is repaired). Exact location of the faulted section is of vital 
importance for the quick intervention and developed FDS can 
help the operator in making decision. Actual fault diagnosis in 
the presented examples is done manually by the operator. 

4.1.	Example A

The fault occurs on the 10 kV transmission line L6 (actual 
fault location – AFL at Fig. 6a) and it started a series of alarms 
that are coming to the distribution network operator that are 
shown at Fig 7. The fault occurs due to the damage of insula-
tor on a one 10 kV transmission line tower – it is single phase 
short-circuit. 

After the fault occurs, overcurrent protection of the relay 
R7 reacts first (Rtrip) and sends a signal to CB10 which opens 
(CBopen) after 47 ms. But overcurrent protection in relay R1 also 
reacts after 200 ms and sends a signal to the CB1 which opens 
after 60 ms. Two causes for this kind of events are possible: first, 
the fault is on the 10 kV line L6 (possible fault location – PFL1 
at the Fig. 6a) and second, the fault is on the 35 kV line L2 (PFL2 
at Fig. 6a). The operator starts the routine by disconnecting all 
the 10 kV lines (L3-L6) together with the associated end con-
sumers and then starts to reclose all the equipment one by one in 
order to find the faulted section. This activated the whole sets of 
alarms that are shown in Fig. 7. The entire procedure lasted from 
20:49:15 till 21:26:15 – approximately 37 minutes. As can be 
seen from the Fig. 7 at 10:26:15 the same four alarms appeared 
as in the beginning. This is the signal for the operator that fault-
ed section was found. Fig. 7 shows original alarm list extracted Fig. 5. Sagittal diagram for the line L6

Fig. 6. Possible (PSF) and actual (AFL) fault locations for Examle A and Example B
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from the CER and four important alarms are highlighted with the red 
rectangle. Detail analysis of the fault can be found in [38].

Out of a whole range of alarms (see Fig. 7), only four are relevant 
for FDS and they are shown in Table 1 together with their statuses, 
time stamps, component, and location. 

Developed fuzzy expert FDS can help the operator to make the 
right decision in uncertain situations, such as in Example A. After the 
statuses and time stamps of the alarms (shown in Table 1) are entered 
in FDS, diagnosis results are obtained and presented in Table 2.

Finally, in order to decide at which location (L6 or L2) the fault 
occurred, the maximum selection criterion is used:  based on the re-

sults from Table 2, most probable fault location is 10 kV line 
L6.

Comparing the time needed to diagnose a faulted section 
when using the proposed FDS and without it (when the diagno-
sis is performed by the operator manually) it can be concluded 
that the proposed FDS shortens the diagnosis time because the 
FDS needed only a few seconds for diagnosing while the opera-
tor needed 37 minutes.

4.2.	Example B

Unlike Example A where the fault occurred at one location 
and four relevant alarms arrived, in Example B there was also 
fault at one location but only one alarm arrived at the operator. 
The actual location of the fault is 35 kV line L2 (AFL in Fig. 
6b). The alarm that arrived is shown in Table 3. It is connected 
with short circuit protection of the relay R1 (Rstart). 

From the alarm in Table 3, it can only be concluded that the 
possible fault refers to the 35 kV line L2 but it is impossible to 
make a diagnosis about the relay operation with only one status 
known. Thus unknown trip status is modeled ( O tripN R ) as it 
is explained in Section 2.2. Diagnosis results are presented in 
Table 4.

Based on the results, the operator can conclude, that relay 
R1 most probably failed to operate (it didn’t send a signal to 
CB1) and that actual fault was on the 35 kV line L2. Diagnosis 

is made only with one available alarm and its probability is 66.3%.

4. Conclusion

This paper presents the fuzzy expert fault diagnosis system (FDS) 
for application to distribution networks. Alarms with their statuses 
and time stamps are used as an input data for diagnosis of correct op-
eration, false operation and failure to operate of the relays and circuit 
breakers. In the next step, using Hamacher’s fuzzy union operator, the 
diagnosis of the fault identification and quantification is done. The 
advantage of the proposed FDS is that it is able to make a diagnosis in 
a situation when only one information is known by modeling the un-
known information using a linear fuzzy membership function. The us-
ability of the developed FDS is presented in two examples of the fault 
diagnosis of the actual events in the real-life distribution network. The 
first example illustrates the situation when arrived alarms indicate two 
fault locations and it is necessary that operator makes the decision and 
chooses the right fault location. The second example illustrates the 
situation when only one alarm is available and the diagnosis is made 
using fuzzy modeling of unknown information. Further research and 
development of the proposed fuzzy expert FDS will seek to complete 
the diagnosis with other types of information. Further testing of de-
veloped FDS will be done on a technically more advanced distribution 
network which contains fault indicators and digital fault recorders. 
For that case, new information will be added to the FDS such as sta-
tuses of fault indicators as well as currents and voltages of digital fault 
recorders. There are possibilities to include non-electrical data such as 

Table 1.	 Alarm list for the Example A

No Status Component Possible fault 
location Time

1. Rtrip R7 L6 20:49:14.901

2. CBopen CB10 L6 20:49:14.948

3. Rtrip R1 L2 20:49:15.206

4. CBopen CB1 L2 20:49:15.266

Table 2.	 Diagnose results for the Example A

Diagnose Membership function

Correct operation of CB10 0.8879

Correct operation of CB1 0.6796

Fault identification on L6 0.8879

Fault identification on L2 0.6796

Fig. 7. Original alarm list exctracted from the CER

Table 3. Alarm list for the Example B

No Status Component Possible fault location  Time

1. Rstart R1 L2 14:23:17.129

Table 4.	 Diagnosis results for the Example B

Diagnose Membership function

Failure to operate of relay R1 0.663

Fault identification on L2 0.663
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GPS location data. Also, the FDS will be upgraded in order to make a 
diagnosis in the distribution networks with a high penetration level of 
distributed energy sources (like photovoltaic power plants etc.).

References

1. Amiri F, Khadivar A. A fuzzy expert system for diagnosis and treatment of musculoskeletal disorders in wrist. Tehnicki vjesnik - Technical 
Gazette 2017; 24(1): 147-155.

2. Bedekar P P, Bhide S R, Kale V S. Fault section estimation in power system using Hebb's rule and continuous genetic algorithm. International 
Journal of Electrical Power & Energy Systems 2011; 33: 457–465, https://doi.org/10.1016/j.ijepes.2010.10.008.

3. Bi T, Wen F, Ni Y, Wu F F. Distributed fault section estimation system using radial basis function neural network and its companion fuzzy system. 
International Journal of Electrical Power & Energy Systems 2003; 25(5): 377–386, https://doi.org/10.1016/S0142-0615(02)00083-2.

4. Chang C S, Chen J M, Srinivasan D, Wen F S, Liew A C. Fuzzy logic approach in power system fault section identification. IEE Proceedings 
- Generation, Transmission and Distribution 1997; 144(5): 406-414, https://doi.org/10.1049/ip-gtd:19971278.

5. Daniels M J, Hogan J W. Missing data in longitudinal studies: Strategies for Bayesian Modeling and Sensitivity Analysis, Chapman & Hall/
CRC, 2008.

6. Duan R, Hu L, Lin Y. Fault diagnosis for complex systems based on dynamic evidential network and multi-attribute decision making 
with interval numbers. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19(4): 580–589, https://doi.org/10.17531/
ein.2017.4.12.

7. Ferreira V H, Zanghi R, Fortes M Z, Sotelo G G, Silva R B M, Souza J C S, Guimarães C H C, Gomes S. A survey on intelligent system 
application to fault diagnosis in electric power system transmission lines. Electric Power Systems Research 2016; 136: 135–153, https://doi.
org/10.1016/j.epsr.2016.02.002.

8. Gómez Mu-oz C, García Marquez F, Arcos Jimenez A, Cheng L, Kogia M, Mohimi A, Papaelias M. A heuristic method for detecting and 
locating faults employing electromagnetic acoustic transducers. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19(4): 
493–500, https://doi.org/10.17531/ein.2017.4.1.

9. Hyun-Joon C, Jong-Keun P. An expert system for fault section diagnosis of power systems using fuzzy relations. IEEE Transactions on 
power systems 1997; 12(1): 342-348, https://doi.org/10.1109/59.574957.

10. Isik M F, Haboglu M R, Yilmaz C, Yilmaz E N. Design and Implementation of Real Time Monitoring and Control System for Distributed 
Robotic Systems Supported with IOS/Android Application. Tehnicki vjesnik - Technical Gazette 2018; 25(2): 423-428.

11. Jadid S B, Jeyasurya B, Khaparde S A. Power system fault diagnosis expert system using PROLOG. Fourth IEEE Region 10 International 
Conference TENCON, IEEE; 778–781, https://doi.org/10.1109/TENCON.1989.177053.

12. Jarventausta P, Verho P, Partanen J. Using fuzzy sets to model the uncertainty in the fault location process of distribution networks. IEEE 
Transactions on Power Delivery 1994; 9(2): 954–960, https://doi.org/10.1109/61.296278.

13. Kimura T, Nishimatsu S, Ueki Y, Fukuyama Y. Development of an expert system for estimating fault section in control center based on 
protective system simulation. IEEE Transactions on Power Delivery 1992; 7(1): 167–172, https://doi.org/10.1109/61.108904.

14. Leão F B, Pereira R A F, Mantovani J R S. Fast fault section estimation in distribution control centers using adaptive genetic algorithm. 
International Journal of Electrical Power & Energy Systems 2014; 63: 787–805, https://doi.org/10.1016/j.ijepes.2014.06.052.

15. Lee H-J, Park D-Y, Bok-Shin Ahn, Park Y-M, Park J-K, Venkata S S. A fuzzy expert system for the integrated fault diagnosis. IEEE 
Transactions on Power Delivery 2000; 15(2): 833–838, https://doi.org/10.1109/61.853027.

16. Liacco T E, Kraynak T J. Processing by logic programming of circuit-breaker and protective-relaying information. IEEE Transactions on 
power apparatus and systems 1969; 88(2): 171-175, https://doi.org/10.1109/TPAS.1969.292418.

17. Liao Z, Wang D, Tang L, Ren J, Liu Z. A Heuristic Diagnostic Method for a PV System: Triple-Layered Particle Swarm Optimization–Back-
Propagation Neural Network. Energies 2017; 10(2): 226, https://doi.org/10.3390/en10020226.

18. McDonald J R, Burt G M, Zielinski J S, McArthur S D J. Intelligent knowledge based systems in electrical power engineering. Boston, MA: 
Springer US; 1997, https://doi.org/10.1007/978-1-4615-6387-7.

19. Meza E M, de Souza J C S, Schilling M T, Do Coutto Filho M B. Exploring fuzzy relations for alarm processing and fault location in 
electrical power systems. 2001 IEEE Porto Power Tech Proceedings, https://doi.org/10.1109/PTC.2001.964909.

20. Monsef H, Ranjbar A M, Jadid S. Fuzzy rule-based expert system for power system fault diagnosis. IEE Proceedings - Generation, 
Transmission and Distribution 1997; 144(2); 186-192, https://doi.org/10.1049/ip-gtd:19970799.

21. Oliveira A L, de Araújo O C B, Cardoso G, de Morais A P, Mariotto L. A mixed integer programming model for optimal fault section 
estimation in power systems. International Journal of Electrical Power & Energy Systems 2016; 77: 372–384, https://doi.org/10.1016/j.
ijepes.2015.11.090.

22. Park Y M, Kim G W, Sohn J M. A logic based expert system (LBES) for fault diagnosis of power system. IEEE Transactions on power 
systems 1997; 12(1): 363-369, https://doi.org/10.1109/59.574960.

23. Pospiech_Kurkowska S. Processing of Missing Data in a Fuzzy System. In: Pietka E, Kawa J (editors). Information Technologies in 
Biomedicine. Advances in Soft Computing 2008; 47.

24. Rafinia A, Moshtagh J. A new approach to fault location in three-phase underground distribution system using combination of wavelet 
analysis with ANN and FLS. International Journal of Electrical Power & Energy Systems 2014; 55: 261–274, https://doi.org/10.1016/j.
ijepes.2013.09.011.

25. Rahman M S, Isherwood N, Oo A M T. Multi-agent based coordinated protection systems for distribution feeder fault diagnosis 
and reconfiguration. International Journal of Electrical Power & Energy Systems 2018; 97:106–119, https://doi.org/10.1016/j.
ijepes.2017.10.031.

26. Sekine Y, Akimoto Y, Kunugi M, Fukui C, Fukui S. Fault diagnosis of power systems. Proceedings of the IEEE 1992; 80(5): 673–683, https://
doi.org/10.1109/5.137222.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 20, No. 4, 2018 629

Science and Technology

27. Shrivastava S, Jain S, Nema R K, Chaurasia V. Two level islanding detection method for distributed generators in distribution networks. 
International Journal of Electrical Power & Energy Systems 2017; 87: 222–231, https://doi.org/10.1016/j.ijepes.2016.10.009.

28. Smolinski M, Perkowski T, Mystkowski A, Egidijus D, Eidukynas D, Jastrzebski R P. AMB flywheel integration with photovoltaic 
system for household purpose. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19(1): 86–94, https://doi.org/10.17531/
ein.2017.1.12.

29. Talukdar S N, Cardozo E, Leao Luiz V. Toast: The Power System Operator's Assistant. Computer 1986; 19(7): 53–60, https://doi.org/10.1109/
MC.1986.1663279.

30. Topić D, Šljivac D, Stojkov M. Reliability model of different wind power plant configuration using sequential monte carlo simulation. 
Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18(2): 237–244, https://doi.org/10.17531/ein.2016.2.11.

31. Wall de T, Pannekoke J, Scholtus S. Handbook of statistical data editing and imputation, Wiley, 2011.
32. Wollenberg B F, Sakaguchi T. Artificial intelligence in power system operations. Proceedings of the IEEE 1987; 75(12): 1678–1685, https://

doi.org/10.1109/PROC.1987.13935.
33. Yu D, Chen Z M, Xiahou K S, Li M S, Ji T Y, Wu Q H. A radically data-driven method for fault detection and diagnosis in wind turbines. 

International Journal of Electrical Power & Energy Systems 2018; 99: 577–584, https://doi.org/10.1016/j.ijepes.2018.01.009.
34. Zhang Y, Zhang Y, Wen F, Chung C Y, Tseng C-L, Zhang X, Zeng F, Yuan Y. A fuzzy Petri net based approach for fault diagnosis in power 

systems considering temporal constraints. International Journal of Electrical Power & Energy Systems 2016; 78: 215–224, https://doi.
org/10.1016/j.ijepes.2015.11.095.

35. Zhao Y, Li D, Dong A, Kang D, Lv Q, Shang L. Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data. Energies 
2017; 10(8): 1210, https://doi.org/10.3390/en10081210.

36. Zhou Q, Xiong T, Wang M, Xiang C, Xu Q. Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and 
Modified ANFIS. Energies 2017; 10(7): 898, https://doi.org/10.3390/en10070898.

37. Zimmermann H J. Fuzzy Set Theory—and Its Applications, Fourth Edition. New York: Springer Science+Business Media, 2001.
38. Kaluđer S, Nikolovski S, Majdandžić Lj. Alarm processing in a power system by human expert. Tehnicki vjesnik - Technical Gazette 2013; 

20(2): 343-349.Re

Slaven Kaluđer
HEP ODS Elektroslavonija Osijek
Cara Hadrijana 3, 31000 Osijek, Croatia

Krešimir Fekete
Lajos Jozsa
Zvonimir Klaić
Josip Juraj Strossmayer University of Osijek 
Faculty of Electrical Engineering, Computer Science and 
Information Technology Osijek
Kneza Trpimira 2B 31000 Osijek, Croatia

E-mails: slaven.kaluder@gmail.com, kresimir.fekete@ferit.hr, 
jozsa.lajos@ferit.hr, zvonimir.klaic@ferit.hr 


